Optimalisasi Turbin Angin Savonius Vertikal Berbasis MPPT Algoritma Perturb and Observe (P&O) sebagai Suplai Sistem Pemanas Air di Kapal

Authors

  • Aryo Dwi Pinanggola Politeknik Pelayaran Surabaya
  • Henna Nurdiansari Politeknik Pelayaran Surabaya
  • Maulidiah Rahmawati Politeknik Pelayaran Surabaya

DOI:

https://doi.org/10.61132/globe.v3i3.1071

Keywords:

ESP32, MPPT, P&O, Renewable Energy, Savonius Wind Turbine, Ship Water Heater

Abstract

As an archipelagic country, Indonesia has significant potential for the utilization of renewable energy, particularly wind energy in maritime areas with low wind speeds (3–6 m/s). This study aims to design and test a vertical Savonius wind turbine system equipped with a Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) algorithm as a power source for shipboard water heating systems. The research method applied is Research and Development (R&D), integrating several components such as a DC generator, full-wave bridge rectifier, INA219 current sensor, anemometer cup sensor, ESP32 microcontroller, and a monitoring interface utilizing Google Spreadsheet and a 20x4 LCD. The system was tested under two operating conditions: without MPPT and with MPPT. The experimental results show that the application of the MPPT algorithm successfully increased power output by up to 272.64% while maintaining voltage stability despite varying wind speeds. Nevertheless, the average output power of 2.605 W remained insufficient to meet water heating requirements within a short time. For example, charging a 12V 50Ah battery would require approximately 9.6 consecutive days of operation, highlighting the system’s limitations in high-demand scenarios. Despite these constraints, the findings demonstrate that the vertical Savonius wind turbine integrated with MPPT has strong potential as a clean and environmentally friendly alternative energy solution for maritime applications, particularly for small-scale onboard electrical loads. This study contributes to renewable energy utilization in the shipping sector and provides a foundation for further technological development and optimization.

References

Abdellatif, H., Ali, H., Abdellah, E. F., & Oussama, A. (2025). Energy efficiency investigation of sun-path tracker systems. EPJ Web of Conferences, 326, 05010. https://doi.org/10.1051/epjconf/202532605010

Alfonso-Corcuera, D., Lopez-Nuñez, E., Ogueta-Gutiérrez, M., Vega, E., Curea, O., Sanz-Andrés, Á., & Pindado, S. (2022). Design of a cup anemometer performance simulator. Sensors, 22(9), 3334. https://doi.org/10.3390/s22093334

Ananda, B. P., Faqih, F. M., Alkindi, M. F., Pribadi, F. S., & Aprilianto, R. A. (2024). Tren algoritma InC, PID dan FLC untuk MPPT pada sistem fotovoltaik: Systematic review. Jurnal Energi Baru dan Terbarukan, 5(2), 78–89. https://doi.org/10.14710/jebt.2024.23089

Bongiovanni, C. S., & Sansoè, L. (2024). Control board design for dual voltage source inverters in automotive applications. Politecnico di Torino.

Hareendran, T. K. (2021). INA219 current sensor module primer. Electronicsforu.com. https://edn.com/ina219-current-sensor-module-primer

Herlambang, Y. D., Hendrawati, D., Agustin, A. D., Kusuma, K. A., Wahyuningsih, S., & Wigiantoro, W. (2020). Model turbin angin Savonius untuk meningkatkan kinerja PLTB. Eksergi, 16(1), 1–10. https://doi.org/10.32497/eksergi.v16i1.2203

Li, Q., Yang, Y., & Chen, X. (2022). Advances in maximum power point tracking techniques for photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 153, 111788. https://doi.org/10.1016/j.rser.2021.111788

Petrović, P., & Tatović, M. (2025). New full-wave/half-wave rectifier with electronic control. Journal of Electrical Engineering, 76(2), 147–158. https://doi.org/10.2478/jee-2025-0015

Saputro, D., Nugroho, D., & Utomo, S. B. (2019). Analisa optimalisasi pembangkit listrik tenaga angin dengan menggunakan maximum power point tracking (MPPT). Prosiding Konferensi Ilmiah Mahasiswa Unissula (KIMU) 2, Universitas Islam Sultan Agung.

Seminar Hasil Elektro S1 ITN Malang. (n.d.). Proceedings of the Seminar Hasil Elektro S1 ITN Malang.

Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345. https://doi.org/10.1016/j.rser.2007.10.005

Susanto, D., & Sebayang, P. (2018). Rancang bangun dan analisa kinerja generator fluks aksial magnet permanen putaran rendah untuk turbin angin sumbu vertikal tipe Savonius. Piston: Journal of Technical Engineering, 2(1), 12–17. https://doi.org/10.32493/pjte.v2i1.3222

Wicaksono, D. H., Djuniadi, D., & Apriaskar, E. (2023). Monitoring sistem pembangkit listrik tenaga angin berbasis Internet of Things. Jurnal Teknologi Elektro, 14(2), 118–127. https://doi.org/10.22441/jte.2023.v14i2.010

Yusoff, Y., Ibrahim, I., & Abdullah, M. (2021). Development of Savonius vertical axis wind turbine for low wind speed application. IOP Conference Series: Materials Science and Engineering, 1101(1), 012003. https://doi.org/10.1088/1757-899X/1101/1/012003

Zealita, Z., Prasetia, V., & Zaenurrohman. (2025). Monitoring konsumsi daya listrik menggunakan Google Spreadsheet. Infotekmesin, 16(1), 256–262. https://doi.org/10.35970/infotekmesin.v16i1.2523.

Downloads

Published

2025-09-08

How to Cite

Aryo Dwi Pinanggola, Henna Nurdiansari, & Maulidiah Rahmawati. (2025). Optimalisasi Turbin Angin Savonius Vertikal Berbasis MPPT Algoritma Perturb and Observe (P&O) sebagai Suplai Sistem Pemanas Air di Kapal. Globe: Publikasi Ilmu Teknik, Teknologi Kebumian, Ilmu Perkapalan, 3(3), 249–267. https://doi.org/10.61132/globe.v3i3.1071

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.