


DOI: https://doi.org/10.61132/jupiter.v2i5.559





# Jaringan Syaraf Tiruan Memprediksi Jumlah Kebutuhan Semen pada Toko Bangunan Bintang Makmur Menggunakan Metode *Backpropagation*

# Dhovan Damara Santoso\*1, Relita Buaton2, Mili Alfhi Syari3

<sup>1,2,3</sup> STMIK Kaputama Binjai, Indonesia

<sup>1</sup>dhovandamara01@gmail.com, <sup>2</sup>bbcbuaton@gmail.com, <sup>3</sup>mili.alfisyari@yahoo.co.id

Alamat: Jl. Veteran No.4A-9A Binjai Korespondensi Penulis: <a href="mailto:dhovandamara01@gmail.com">dhovandamara01@gmail.com</a>\*

Abstract. Every company is required to plan the need for goods as effectively as possible in order to maximize profits. Bintang Makmur Building Shop is a building shop that provides building materials, especially cement. Cement is one of the basic materials for buildings. The need for cement has recently continued to increase due to the large number of developments, both housing projects and road construction. In addition to the increasing demand for cement, cement prices also experienced price volatility which tended to fluctuate. This is done so that there is no stockpiling or even a shortage of cement. With prices that tend to go up and down if there is too much stock, it will cause losses if there is a price decrease. Vice versa if there is a shortage of cement stock, it can cause disappointment to customers. To deal with the above, it is necessary to build a prediction system that can predict cement needs in prosperous shops. The system that will be built uses an Artificial Neural Network (Artificial Neural Network) which is part of the science of artificial intelligence which has been widely used to solve various kinds of problems related to prediction or forecasting by utilizing the Backpropagation Method. The system is designed with the MATLAB programming application. From the results of the research that has been carried out, it was found that the total demand for Andalas cement for January of the following year is 0.2532 or 2532, thus the predicted total demand for Andalas cement is 2532 sacks.

Keywords: Artificial Neural Networks, Cement, MATLAB, Backpropagation

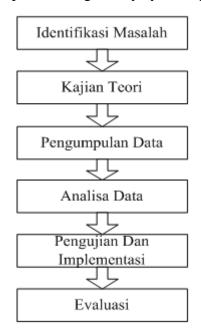
Abstrak. Setiap perusahaan dituntut untuk merencanakan kebutuhan akan barang seefektif mungkin agar dapat memaksimalkan keuntungan. Toko Bangunan Bintang Makmur merupakan salah satu toko bangunan yang menyediakan bahan bangunan terutama semen. Semen merupakan salah satu bahan dasar untuk bangunan. Kebutuhan akan semen akhir-akhir ini terus mengalami peningkatan disebebkan banyaknya pembangunan baik proyek perumahan maupun pembangunan jalan. Selain kebutuhan semen yang meningkat harga semen juga mengalami ketidak stabilan harga yang cenderung naik turun. Hal ini dilakukan agar tidak terjadi penimbunan atau bahkan kekurangan semen. Dengan harga yang cenderung naik turun jika distok terlalu banyak akan menyebabkan kerugian jika terjadi penurunan harga. Begitu juga sebaliknya jika kekurangan stok semen maka dapat menyebabkan kekecewaan terhadap para pelanggan. Untuk menangani hal tersebut di atas, perlu dibangun sebuah sistem prediksi yang dapat memprediksi kebutuhan semen pada toko makmur. Sistem yang akan dibangun menggunakan Jaringan Syaraf Tiruan (Artificial Neural Network) yang merupakan bagian dari ilmu kecerdasan buatan yang sudah banyak digunakan untuk menyelesaikan berbagai macam masalah yang berhubungan dengan prediksi atau peramalan dengan pemanfaatan Metode Backpropagation. Sistem dirancang dengan aplikasi pemerograman MATLAB. Dari hasil penelitian yang telah dilakukan, didapatkan bahwa jumlah kebutuhan semen andalas untuk bulan Januari pada tahun selanjutnya yaitu 0,2532 atau 2532, dengan demikian jumlah prediksi kebutuhan semen andalas sebesar 2532 sak.

Kata kunci: Jaringan Syaraf Tiruan, Semen, MATLAB, Backpropagation

#### 1. PENDAHULUAN

Perkembangan teknologi dari hari ke hari semakin canggih dan berkembang dengan pesat. Perkembangan teknologi saat ini tidak dapat dipisahkan dari kehidupan manusia. Perkembangan pada zaman sekarang ini cenderung untuk mengembangkan teknologi yang cerdas dengan memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Kecerdasan teknologi diharapkan mampu membantu berbagai persoalan dalam kehidupan sehari-hari dengan cepat dan akurat [1]. Banyak kecerdasan buatan yang dapat

diterapkan dalam banyak bidang dalam kehidupan. Para ahli mencoba untuk mengadaptasi otak manusia ke dalam sistem komputer sehingga diharapkan di masa yang akan datang kecerdasan buatan tersebut dapat mendekati kerja otak manusia. Penerapan kecerdasan buatan yang sering diaplikasikan dalam berbagai persoalan dikehidupan salah satunya adalah jaringan syaraf tiruan.


Setiap perusahaan dituntut untuk merencanakan kebutuhan akan barang seefektif mungkin agar dapat memaksimalkan keuntungan. Toko Bangunan Bintang Makmur merupakan salah satu toko bangunan yang menyediakan bahan bangunan terutama semen. Semen merupakan salah satu bahan dasar untuk bangunan. Kebutuhan akan semen akhir-akhir ini terus mengalami peningkatan disebebkan banyaknya pembangunan baik proyek perumahan maupun pembangunan jalan [2]. Selain kebutuhan semen yang meningkat harga semen juga mengalami ketidak stabilan harga yang cenderung naik turun. Unuk memenuhi kebutuhan semen para pelanggan, toko bintang makmur harus membuat perencanaan kebutuhan semen yang baik dengan melakukan estimasi terhadap permintaan pelanggan. Hal ini dilakukan agar tidak terjadi penimbunan atau bahkan kekurangan semen. Dengan harga yang cenderung naik turun jika distok terlalu banyak akan menyebabkan kerugian jika terjadi penurunan harga. Begitu juga sebaliknya jika kekurangan stok semen maka dapat menyebabkan kekecewaan terhadap para pelanggan.

Menangani hal tersebut di atas, perlu dibangun sebuah sistem prediksi yang dapat memprediksi kebutuhan semen pada toko makmur. Sistem yang akan dibangun menggunakan Jaringan Sayraf Tiruan (*Artificial Neural Network*) yang merupakan bagian dari ilmu kecerdasan buatan yang sudah banyak digunakan untuk menyelesaikan berbagai macam masalah yang berhubungan dengan prediksi atau peramalan [1], [3]. Jaringan Sayraf Tiruan merupakan suatu sistem komputasi dimana pada arsitektur dan operasinya dipahami dari pengetahuan tentang sel syaraf biologis di dalam otak, yang berupa bagian dari representasi buatan dari dalam otak manusia yang mencoba menstimulasikansuatu proses pembelajaran pada otak tersebut [4][5]. Sistem yang dibangun diharapkan dapat memprediksi kebutuhan semen secara tepat. Dengan adanya sistem ini diharapkan toko bintang makmur dapat melakukan perencanaan kebutuhan semen yang lebih baik.

# 2. METODE PENELITIAN

Dalam menyelesaikan sebuah masalah dalam penelitian, tentunya penelti harus memeliki cara atau sebuah metode yang akan diterapkan dalam menyelesaikan masalah agar penelitian yang dilakukan dapat terselesaikan dengan baik dan sesuai dengan hasil yang diharapkan.

Metode penelitian dilakukan untuk mencari sesuatu secara sistematis dengan menggunakan metode ilmiah serta sumber yang berlaku. Dalam proses penelitian ini ditujukan untuk pihak CV. Bintang Makmur, terutama dalam bidang prediksi jumlah kebutuhan semen dengan memberikan hasil yang lebih berarti. Hasil dari konseptualisasi akan dituangkan menjadi suatu metode penelitian yang lengkap dengan pola studi literature, pengumpulan data yang diperlukan untuk menganalisis sistem prediksi yang akan dibuat yaitu untuk memprediksi jumlah kebutuhan semendengan menggunakan metode *Backpropagation*. Metodologi penelitian yang digunakan pada penelitian ini, dapat dibuat suatu alur kegiatan metode kerja penelitian yang akan dilakukan. Adapun alur kegiatannya yaitu seperti pada gambar berikut:



Gambar 1. Metodologi Penelitian

# Jaringan Syaraf Tiruan

Jaringan syaraf tiruan adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan syaraf manusia. Jaringan syaraf tiruan merupakan sistem adaptif yang dapat mengubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Secara sederhana, JST adalah sebuah alat pemodelan data statistik non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data [3], [6].

Jaringan Syaraf Tiruan berkembang secara pesat pada beberapa tahun terakhir. Jaringan Syaraf Tiruan telah dikembangkan sebelum adanya suatu computer konvensional yang canggih dan terus berkembang walaupun pernah mengalami masa vakum selama beberapa tahun [7].

### Metode Backpropagation

Metode *Backpropagation* merupakan sebuah metode sistematik pada jaringan syaraf tiruan dengan menggunakan algoritma pembelajaran yang terawasi dan biasanya digunakan oleh perceptron dengan banyak layar lapisan untuk mengubah bobot-bobot yang ada pada lapisan tersembunyinya [8], [6], [9]–[11]. Algoritma *Backpropagation* adalah pelatihan jenis terkontrol dimana menggunakan pola penyesuaian bobot untuk mencapai nilai kesalahan yang minimum antara keluaran hasil prediksi dengan keluaran yang nyata [12]. Secara rinci algoritma pelatihan jaringan *Backpropagation* yaitu:

- 1. Inisialisasi bobot (ambil bobot awal dengan nilai random yang cukup kecil).
- 2. Tetapkan maksimum *Epoch*, Targer *error*, dan *learning rate*.
- 3. Inisialisasi Epoch = 0.
- 4. Kerjakan langkah-langkah berikut selama kondisi bernilai salah yaitu dengan tahapan berikut :
  - a. Tahapan perambatan Maju (Forwardpropagation)
  - 1) Tiap unit input ( $x_i$ , i=1,2,3,.....n) menerima sinyal  $x_i$  dan meneruskan sinyal tersebut pada lapisan yang ada diatasnya (lapisan tersembunyi).
  - 2) Tiap-tiap unit pada suatu lapisan tersembunyi (zj, j=1,2,3,...,p) menjumlahkan sinyal-sinyal terbobot :

$$z_{-i}n_{j} = v0_{j} + \sum_{i=1}^{n} x_{i} v_{ij}$$
 (1)

Gunakan fungsi aktivasi untuk menghitung sinyal outputnya:

$$z_{j} = f(Z_{i}n_{j}) \tag{2}$$

Dan kirimkan sinyal tersebut ke semua unit dilapisan atasnya (unit-unit outputnya).

3) Tiap unit *output* ( $(y_k, k = 1,2,3,....m)$  menjumlahkan sinyal-sinyal input terbobot.

$$y_{-i}n_k = w0_k + \sum_{i=1}^p z_i v_{ik}$$
 (3)

Gunakan fungsi aktivasi untuk menghitung sinyal outputnya:

$$y_k = f(y_i i n_k) \tag{4}$$

Dan kirimkan sinyal tersebut kesemua unit dilapisan atasnya (unit-unit *output*).

- b. Tahapan Perambatan Mundur (*Backpropagation*)
- 1) Tiap-tiap unit output  $(y_k, k=1,2,3,....,m)$  menerima target pola yang berhubungan dengan pola input pembelajaran. Hitung informasi errornya.

$$\sigma_k = (t_k - y_k) f'(y_i n_k) \tag{5}$$

Kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki  $w_{ik}$ ).

$$\Delta w_{ik} = \alpha \,\sigma_k z_{ij} \tag{6}$$

Hitung juga koreksi bias (yang nantinya akan digunakan untuk memperbaiki nilai  $w_{0k}$ ).

$$\Delta w_{jk} = \alpha \ \sigma_k \tag{7}$$

Kirimkan  $\sigma_k$  ini ke unit-unit yang ada lapisan bawahnya.

2) Tiap-tiap unit tersembunyi ( $z_{j}$ , j=1,2,3,....,p) menjumlahkan delta inputnya (dari unit-unit yang berada pada lapisan atasnya).

$$\sigma_{-in_j} = \sum_{k=1}^m \sigma k \, w_{jk} \tag{8}$$

Kalikan nilai ini dengan turunan dari fungsi aktivasinya untuk menghitung informasi *error*.

$$\sigma_i = \sigma_i i n_i f'(z_i i n_i) \tag{9}$$

Kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki nilai  $v_{ij}$ ).

$$\Delta v_{jk} = \alpha \,\sigma_j \,xi \tag{10}$$

Hitung juga koreksi bias (yang nantinya akan digunakan untuk memperbaiki nilai  $v_{0j}$ ).

$$\Delta v_{jk} = \alpha \,\sigma_j \tag{11}$$

- c. Tahapan Perubahan Bobot dan Bias
  - 1) Tiap unit *output*  $(y_k, k=1,2,3,....,m)$  memperbaiki bias dan bobotnya (j=0,1,2,3,....,p).

$$w_{jk}(\text{baru}) = w_{jk}(\text{lama}) + \Delta w_{jk}$$
 (12)

2) Tiap-tiap unit tersembunyi ( $z_j$ , j=1,2,3,....,p) memperbaiki bias dan bobotnya (i=0,1,2,3,....,n).

$$v_{ij}(\text{baru}) = v_{ij}(\text{lama}) + \Delta w_{ij}$$
 (13)

#### 3. HASIL DAN PEMBAHASAN

Dalam memprediksi sebuah data tentunya diperlukan data-data terdahulu yang akan menjadi pendukung untuk dilakukan analisis perhitungan sebuah metode sehingga nantinya dapat diperoleh sebuah alternatif terbaik berdasarkan data yang telah ditentukan. Dalam sistem prediksi untuk memprediksi jumlah kebutuhan semendengan menggunakan metode *Backpropagation*, data-data yang digunakan yaitu data jumlah kebutuhan semen pada tahun 2019 hingga 2021 berdasarkan jenis semen yaitu Andalas, Tiga Roda dan Semen Padang. Berdasarkan data tersebut maka data-data yang diperoleh dalam penelitian di CV. Bintang Makmur yaitu seperti pada tabel dibawah ini:

Tabel 1. Data SemenAndalas

| Bulan     | Tahun    |          |          |
|-----------|----------|----------|----------|
| Dulali    | 2019     | 2020     | 2021     |
| Januari   | 264 Sak  | 1041 Sak | 1047 Sak |
| Februari  | 387 Sak  | 1023 Sak | 1169 Sak |
| Maret     | 314 Sak  | 949 Sak  | 1083 Sak |
| April     | 530 Sak  | 906 Sak  | 1129 Sak |
| Mei       | 793 Sak  | 994 Sak  | 1289 Sak |
| Juni      | 623 Sak  | 1062 Sak | 1114 Sak |
| Juli      | 641 Sak  | 1107 Sak | 1275 Sak |
| Agustus   | 869 Sak  | 1011 Sak | 1302 Sak |
| September | 985 Sak  | 973 Sak  | 1396 Sak |
| Oktober   | 1002 Sak | 980 Sak  | 1478 Sak |
| November  | 1036 Sak | 1057 Sak | 1441 Sak |
| Desember  | 264 Sak  | 1041 Sak | 1047 Sak |

Tabel 2. Data SemenTiga Roda

| Bulan     | Tahun    |          |          |
|-----------|----------|----------|----------|
| Dulali    | 2019     | 2020     | 2021     |
| Januari   | 451 Sak  | 1021 Sak | 1052 Sak |
| Februari  | 512 Sak  | 979 Sak  | 1078 Sak |
| Maret     | 559 Sak  | 814 Sak  | 1073 Sak |
| April     | 534 Sak  | 947 Sak  | 1124 Sak |
| Mei       | 768 Sak  | 927 Sak  | 1191 Sak |
| Juni      | 638 Sak  | 1024 Sak | 1167 Sak |
| Juli      | 842 Sak  | 1039 Sak | 1202 Sak |
| Agustus   | 906 Sak  | 1068 Sak | 1175 Sak |
| September | 1047 Sak | 1102 Sak | 1205 Sak |
| Oktober   | 953 Sak  | 1138 Sak | 1269 Sak |
| November  | 1061 Sak | 1079 Sak | 1304 Sak |
| Desember  | 451 Sak  | 1021 Sak | 1052 Sak |

Tabel 3. Data Semen Padang

| Bulan     | Tahun    |          |          |
|-----------|----------|----------|----------|
| Dulali    | 2019     | 2020     | 2021     |
| Januari   | 349 Sak  | 1031 Sak | 1024 Sak |
| Februari  | 361 Sak  | 879 Sak  | 1163 Sak |
| Maret     | 497 Sak  | 956 Sak  | 1086 Sak |
| April     | 641 Sak  | 917 Sak  | 1107 Sak |
| Mei       | 791 Sak  | 994 Sak  | 1189 Sak |
| Juni      | 654 Sak  | 1024 Sak | 1248 Sak |
| Juli      | 876 Sak  | 1052 Sak | 1209 Sak |
| Agustus   | 1087 Sak | 976 Sak  | 1361 Sak |
| September | 926 Sak  | 1098 Sak | 1267 Sak |
| Oktober   | 1031 Sak | 1056 Sak | 1342 Sak |
| November  | 963 Sak  | 1174 Sak | 1458 Sak |

| Desember  | 349 Sak | 1031 Sak | 1024 Sak  |
|-----------|---------|----------|-----------|
| Describer | JIJBUK  | 1031 Buk | 102   Dak |

Penerapan metode sangatlah dibutuhkan dalam memecahkan suatu permasalah yang sulit untuk ditentukan dalam proses penilain. Dalam memprediksi sebuah data tentu harus dilakukan analisis-analisis data yang akurat dalam memprediksi sebuah data. Banyak metode yang digunakan dalam memprediksi sebuah data yang telah banyak dilakukan oleh para peneliti. Pada penelitian dengan judul jaringan saraf tiruan untuk memprediksi jumlah kebutuhan semen dengan menggunakan metode *Backpropagation*.

#### 1. Menentukan Data Latih dan Data Target

Data yang digunakan dalam proses analisis jaringan syaraf tiruan menggunakan metode perambatan balik (*Backpropagation*) adalah data jumlah kebutuhan semenmulai dari bulan januari sampai dengan bulan desember. Kemudian data tersebut dijadikan sebagai data latih, target latih dan data uji. Data jumlah kebutuhan semenakan dibagi menjadi dua, data pertama digunakan untuk melatih agar mencapai data yang konvergen. Data yang kedua digunakan sebagai data uji, yaitu data yang belum pernah dilatih untuk menghasilkan prediksi jumlah kebutuhan semenpada bulan/tahun yang akan datang. Setiap data pelatihan menggunakan 2 X 12 pola dan memliki 1 X 12 target data latih. Sedangkan data pengujian menggunakan 2 X 12 pola data uji. Untuk melakukan perhitungan menggunakan metode *Backpropagation* maka data-data tersebut di atas harus dilakukan transformasi terlebih dahulu. Nilai tranformasi diperoleh dari hasil pembagian bilangan yang menghasilkan nol koma, karena dalam metode *Backpropagation* mengenali angka 0 s/d 1 (menggunakan fungsi aktivasi sigmoid biner). Adapun data yang telah di transformasi yaitu seperti pada tabel-tabel dibawah ini:

**Tabel 4.** Transformasi Data Semen Andalas

| Bulan     | Tahun  |        |        |
|-----------|--------|--------|--------|
| Dulali    | 2019   | 2020   | 2021   |
| Januari   | 0,0264 | 0,1041 | 0,1047 |
| Februari  | 0,0387 | 0,1023 | 0,1169 |
| Maret     | 0,0314 | 0,0949 | 0,1083 |
| April     | 0,053  | 0,0906 | 0,1129 |
| Mei       | 0,0793 | 0,0994 | 0,1289 |
| Juni      | 0,0623 | 0,1062 | 0,1114 |
| Juli      | 0,0641 | 0,1107 | 0,1275 |
| Agustus   | 0,0869 | 0,1011 | 0,1302 |
| September | 0,0985 | 0,0973 | 0,1396 |
| Oktober   | 0,1002 | 0,098  | 0,1478 |
| November  | 0,1036 | 0,1057 | 0,1441 |
| Desember  | 0,0264 | 0,1041 | 0,1047 |

Tabel 5. Transformasi Data Semen Tiga Roda

| Bulan     | Tahun  |        |        |
|-----------|--------|--------|--------|
| Dulali    | 2019   | 2020   | 2021   |
| Januari   | 0,0451 | 0,1021 | 0,1052 |
| Februari  | 0,0512 | 0,0979 | 0,1078 |
| Maret     | 0,0559 | 0,0814 | 0,1073 |
| April     | 0,0534 | 0,0947 | 0,1124 |
| Mei       | 0,0768 | 0,0927 | 0,1191 |
| Juni      | 0,0638 | 0,1024 | 0,1167 |
| Juli      | 0,0842 | 0,1039 | 0,1202 |
| Agustus   | 0,0906 | 0,1068 | 0,1175 |
| September | 0,1047 | 0,1102 | 0,1205 |
| Oktober   | 0,0953 | 0,1138 | 0,1269 |
| November  | 0,1061 | 0,1079 | 0,1304 |
| Desember  | 0,0451 | 0,1021 | 0,1052 |

Tabel 6. Transformasi Data Semen Padang

| Bulan     | Tahun  |        |        |
|-----------|--------|--------|--------|
| Dulali    | 2019   | 2020   | 2021   |
| Januari   | 0,0349 | 0,1031 | 0,1024 |
| Februari  | 0,0361 | 0,0879 | 0,1163 |
| Maret     | 0,0497 | 0,0956 | 0,1086 |
| April     | 0,0641 | 0,0917 | 0,1107 |
| Mei       | 0,0791 | 0,0994 | 0,1189 |
| Juni      | 0,0654 | 0,1024 | 0,1248 |
| Juli      | 0,0876 | 0,1052 | 0,1209 |
| Agustus   | 0,1087 | 0,0976 | 0,1361 |
| September | 0,0926 | 0,1098 | 0,1267 |
| Oktober   | 0,1031 | 0,1056 | 0,1342 |
| November  | 0,0963 | 0,1174 | 0,1458 |
| Desember  | 0,0349 | 0,1031 | 0,1024 |

Setelah data di transformasi selanjutnya menentukan data latih dan data target latih. Dibawah ini merupakan nilai data latih dan data targret latih berupa jumlah kebutuhan semen dari yaitu seperti pada table-tabel berikut:

Tabel 7. Pola Masukan Data Latih

| Nilai Masukan Data Latih |          |  |
|--------------------------|----------|--|
| Jan 2019                 | Jan 2020 |  |
| Feb 2019                 | Feb 2020 |  |
| Mar 2019                 | Mar 2020 |  |
| Apr 2019                 | Apr 2020 |  |
| Mei 2019                 | Mei 2020 |  |

| Jun 2019  | Jun 2020  |
|-----------|-----------|
| Jul 2019  | Jul 2020  |
| Ags 2019  | Ags 2020  |
| Sept 2019 | Sept 2020 |
| Okt 2019  | Okt 2020  |
| Nov 2019  | Nov 2020  |
| Des 2019  | Des 2020  |

Tabel 8. Pola Masukan DataTarget

Tabel 9. Data Latih dan Data Target Semen Andalas

| Nilai Masukan Data Latih |        | Target Latih |
|--------------------------|--------|--------------|
| 0,0264                   | 0,1041 | 0,1047       |
| 0,0387                   | 0,1023 | 0,1169       |
| 0,0314                   | 0,0949 | 0,1083       |
| 0,053                    | 0,0906 | 0,1129       |
| 0,0793                   | 0,0994 | 0,1289       |
| 0,0623                   | 0,1062 | 0,1114       |
| 0,0641                   | 0,1107 | 0,1275       |
| 0,0869                   | 0,1011 | 0,1302       |
| 0,0985                   | 0,0973 | 0,1396       |
| 0,1002                   | 0,098  | 0,1478       |
| 0,1036                   | 0,1057 | 0,1441       |
| 0,0264                   | 0,1041 | 0,1047       |

Tabel 10. Data Latih dan Data Target Semen Tiga Roda

| Nilai Masukan Data Latih |        | Target Latih |
|--------------------------|--------|--------------|
| 0,0451                   | 0,1021 | 0,1052       |
| 0,0512                   | 0,0979 | 0,1078       |
| 0,0559                   | 0,0814 | 0,1073       |
| 0,0534                   | 0,0947 | 0,1124       |
| 0,0768                   | 0,0927 | 0,1191       |

| 0,0638 | 0,1024 | 0,1167 |
|--------|--------|--------|
| 0,0842 | 0,1039 | 0,1202 |
| 0,0906 | 0,1068 | 0,1175 |
| 0,1047 | 0,1102 | 0,1205 |
| 0,0953 | 0,1138 | 0,1269 |
| 0,1061 | 0,1079 | 0,1304 |
| 0,0451 | 0,1021 | 0,1052 |

Tabel 11. Data Latih dan Data Target Semen Padang

| Nilai Masukan Data Latih |        | Target Latih |  |
|--------------------------|--------|--------------|--|
| 0,0349                   | 0,1031 | 0,1024       |  |
| 0,0361                   | 0,0879 | 0,1163       |  |
| 0,0497                   | 0,0956 | 0,1086       |  |
| 0,0641                   | 0,0917 | 0,1107       |  |
| 0,0791                   | 0,0994 | 0,1189       |  |
| 0,0654                   | 0,1024 | 0,1248       |  |
| 0,0876                   | 0,1052 | 0,1209       |  |
| 0,1087                   | 0,0976 | 0,1361       |  |
| 0,0926                   | 0,1098 | 0,1267       |  |
| 0,1031                   | 0,1056 | 0,1342       |  |
| 0,0963                   | 0,1174 | 0,1458       |  |
| 0,0349                   | 0,1031 | 0,1024       |  |

Setelah menentukan data latih dan data target latih, selanjutnya yaitu menentukan data uji, data uji digunakan untuk menguji data yang telah di latih. Adapun data uji yang digunakan yaitu data jumlah sementahun 2020 dan 2021 seperrti pada tabel-tabel berikut:

Tabel 12. Pola Masukan Data Uji

| Nilai Masuk | Nilai Masukan Data Uji |  |  |
|-------------|------------------------|--|--|
| Jan 2020    | Jan 2021               |  |  |
| Feb 2020    | Feb 2021               |  |  |
| Mar 2020    | Mar 2021               |  |  |
| Apr 2020    | Apr 2021               |  |  |
| Mei 2020    | Mei 2021               |  |  |
| Jun 2020    | Jun 2021               |  |  |
| Jul 2020    | Jul 2021               |  |  |
| Ags 2020    | Ags 2021               |  |  |
| Sept 2020   | Sept 2021              |  |  |
| Okt 2020    | Okt 2021               |  |  |
| Nov 2020    | Nov 2021               |  |  |
| Des 2020    | Des 2021               |  |  |

Tabel 13. Data Uji Semen Andalas

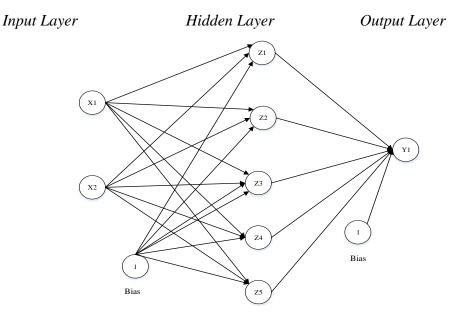
| Nilai Masuk | Nilai Masukan Data Uji |  |  |
|-------------|------------------------|--|--|
| 0,1041      | 0,1047                 |  |  |
| 0,1023      | 0,1169                 |  |  |
| 0,0949      | 0,1083                 |  |  |
| 0,0906      | 0,1129                 |  |  |
| 0,0994      | 0,1289                 |  |  |
| 0,1062      | 0,1114                 |  |  |
| 0,1107      | 0,1275                 |  |  |
| 0,1011      | 0,1302                 |  |  |
| 0,0973      | 0,1396                 |  |  |
| 0,098       | 0,1478                 |  |  |
| 0,1057      | 0,1441                 |  |  |
| 0,1041      | 0,1047                 |  |  |

**Tabel 14.** Data Uji Semen Tiga Roda

| Nilai Masukan Data Uji |        |  |  |
|------------------------|--------|--|--|
| 0,1021                 | 0,1052 |  |  |
| 0,0979                 | 0,1078 |  |  |
| 0,0814                 | 0,1073 |  |  |
| 0,0947                 | 0,1124 |  |  |
| 0,0927                 | 0,1191 |  |  |
| 0,1024                 | 0,1167 |  |  |
| 0,1039                 | 0,1202 |  |  |
| 0,1068                 | 0,1175 |  |  |
| 0,1102                 | 0,1205 |  |  |
| 0,1138                 | 0,1269 |  |  |
| 0,1079                 | 0,1304 |  |  |
| 0,1021                 | 0,1052 |  |  |

Tabel 15. Data Uji Semen Padang

| Nilai Masukan Data Uji |        |  |
|------------------------|--------|--|
| 0,1031                 | 0,1024 |  |
| 0,0879                 | 0,1163 |  |
| 0,0956                 | 0,1086 |  |
| 0,0917                 | 0,1107 |  |
| 0,0994                 | 0,1189 |  |
| 0,1024                 | 0,1248 |  |
| 0,1052                 | 0,1209 |  |
| 0,0976                 | 0,1361 |  |
| 0,1098                 | 0,1267 |  |
| 0,1056                 | 0,1342 |  |
| 0,1174                 | 0,1458 |  |
| 0,1031                 | 0,1024 |  |


# 1. Perhitungan Metode Backpropagation

Proses secara manual menggunakan data jumlah semen robustapada tahun 2021 dengan menggunakan metode *Backpropagation* yang telah ditransform dengan perhitungan seperti pada tabel berikut:

**Tabel 16** .Variabel Input Perhitungan Metode *Backpropagation* 

| l | Input Da | ata Latih | Data Target Latih | Nilai Inpt Data Latih |        | Nilai Data Target |
|---|----------|-----------|-------------------|-----------------------|--------|-------------------|
|   | X1       | X2        | Data Target Latin | X1                    | X2     | Milai Data Target |
|   | Okt 2021 | Nov 2021  | Des 2021          | 0,1396                | 0,1478 | 0,1441            |

Arsitektur jaringan syaraf tiruan mengguanakan metode *Backpropagation*yaitu seperti pada gambar dibawah ini:



Gambar 1. Gambar Arsitektur Jaringan Saraf Tiruan

#### Keterangan:

Xi : Lapisan input 2 neuron

Zj: Lapisan hidden 5 neuron

Y1: Lapisan output 1 neuron

1 : Konstanta bias.

Bobot awal yang menghubungkan *neuron-neuron* pada lapisan input dan lapisan tersembunyi  $(V_{11}, V_{1-n}, V_{21}, V_{2-n})$  dan bobopt bias  $V_{01}$ , dan  $V_{0n}$  dipilih secara acak. Demikian pula bobot awal yang menghubungkan *neuron-neuron* pada lapisan tersembunyi dan lapisan output  $(W_{11}, W_{12}, ...., W_{1n})$  dan bobot bias  $W_{01}$  juga dipilih secara acak. Berikut ini merupakan perhitungan pelatihan menggunakan metode *Backpropagation*. Inisialisasi ditetapkan sebagai berikut:

1. *Learning rate* (α) = 0.2

2. Target *error* = 0.01

3. *MaximumEpoch* = 10000

4. Target (T) = 0.1441

Inisialisasi bobot secara acak yaitu sebagai berikut :

a. Bobot awal input ke hidden layer  $(V_{ij})$ :

$$V_{11} = 0,1$$
  $V_{12} = 0,2$   $V_{13} = 0,3$   $V_{14} = 0,4$   $V_{15} = 0,2$ 

$$V_{21} = 0,3$$
  $V_{22} = 0,1$   $V_{23} = 0,4$   $V_{24} = 0,2$   $V_{25} = 0,5$ 

b. Bobot awal bias ke *hidden layer*  $(V_{0j})$ :

$$V_{01} = 0,2 \hspace{1cm} V_{02} = 0,1 \hspace{1cm} V_{03} = 0,3 \hspace{1cm} V_{04} = 0,5 \hspace{1cm} V_{05} = 0,4$$

c. Bobot awal hidden layer ke output layer (W<sub>ik</sub>)

$$W_{11} = 0,1$$
  $W_{11} = 0,3$   $W_{31} = 0,2$   $W_{41} = 0,1$   $W_{51} = 0,2$ 

d. Bobot awal bias ke output layer  $(W_{0i})$ :

$$W_{01} = 0,1$$

Tahap perambatan maju (Forward Propagation)

Operasi pada hidden layer dengan persamaan :

$$Z_{in_1} = V_{01} + \sum_{i=1}^{5} x_i V_{ij}$$

$$Z_{in_1} = 0.2 + (0.1396*0.1) + (0.1478*0.3) = 0.2583$$

$$Z_in_2 = V_{02} + \sum_{i=1}^5 x_i V_{i2}$$

$$Z_{in_2} = 0.1 + (0.1396 * 0.2) + (0.1478 * 0.1) = 0.1427$$

$$Z_{in_3} = V_{03} + \sum_{i=1}^{5} x_1 V_{i3}$$

$$Z_in_3 = 0.3 + (0.1396 * 0.3) + (0.1478 * 0.4) = 0.401$$

$$Z_{in4} = V_{04} + \sum_{i=1}^{5} x_1 V_{i4}$$

$$Z_{in_4} = 0.5 + (0.1396 * 0.4) + (0.1478 * 0.2) = 0.5854$$

$$Z_{in_5} = V_{05} + \sum_{i=1}^{5} x_1 V_{i5}$$

$$Z_{in_5} = 0.4 + (0.1396 *0.2) + (0.1478 *0.5) = 0.50182$$

Fungsi aktivasi sigmoid biner pada hidden layer dengan persamaan :

$$Z_1 = \frac{1}{1 + e^{-z}in_1} = \frac{1}{1 + e^{-0.2583}} = 0.56422$$

#### JARINGAN SYARAF TIRUAN MEMPREDIKSI JUMLAH KEBUTUHAN SEMEN PADA TOKO BANGUNAN BINTANG MAKMUR MENGGUNAKAN METODE BACKPROPAGATION

$$Z_2 = \frac{1}{1 + e^{-z} - in_2} = \frac{1}{1 + e^{-0.1427}} = 0.53561$$

$$Z_3 = \frac{1}{1+e^{-z_i i n_3}} = \frac{1}{1+e^{-0.401}} = 0.59893$$

$$Z_4 = \frac{1}{1 + e^{-z} i n_4} = \frac{1}{1 + e^{-0.5854}} = 0.64231$$

$$Z_5 = \frac{1}{1+e^{-z_-in_4}} = \frac{1}{1+e^{-0.50182}} = 0.62289$$

Operasi pada output layer dengan persamaan:

$$Y_{in_{1}} = W_{k1} + \sum_{i=1}^{3} Z_{j} W_{kj}$$

$$Y_{in_{1}} = 0.1 + (0.56422*0.1) + (0.53561*0.3) + (0.59893*0.2) + (0.64231*0.4) + (0.62289*0.2) = 0.6257$$

Fungsi aktivassi sigmoid binner pada output layer dengan persamaan:

$$Y_1 = \frac{1}{1 + e^{-y_- i n_1}} = \frac{1}{1 + e^{-0.6257}} = 0.64884$$

Cek *error* (iterasi berhenti bila *error*<0,01)

Error lapisan  $Y_1 = 0.1441 - 0.64884 = -0.6028$ 

Jumlah kuadrat  $error = (-0.6028)^2 = 0.6257$ 

Tahap perambatan balik (Backpropagation)

$$\delta_{1} = (T_{1} - y) * (\frac{1}{1 + e^{-y_{-}in_{1}}}) * [1 - (\frac{1}{1 + e^{-y_{-}in_{1}}})]$$

$$\delta_{1} = (0,1441 - 0,64884) * (\frac{1}{1 + e^{-0,6257}}) * [1 - (\frac{1}{1 + e^{-0,6257}})]$$

$$= -0.1152$$

Suku perubahan bobot  $W_{ik}$  (dengan  $\alpha = 0.2$ ):

Menghitung koreksi bobot dengan persamaan:

$$\Delta W_{11} = \alpha \delta_1 Z_1 = 0.2 * (-0.1152) * 0.56422 = -0.013$$

$$\Delta W_{21} = \alpha \delta_1 Z_2 = 0.2 * (-0.1152) * 0.53561 = -0.012341$$

$$\Delta W_{31} = \alpha \delta_1 Z_3 = 0.2 * (-0.1152) * 0.59893 = -0.0138$$

$$\Delta W_{41} = \alpha \delta_1 Z_2 = 0.2 * (-0.1152) * 0.64231 = -0.014799$$

$$\Delta W_{51} = \alpha \delta_1 Z_3 = 0.2 * (-0.1152) * 0.62289 = -0.014352$$

Menghitung koreksi bias dengan persamaan berikut :

$$\Delta W_{01} = \alpha \delta_1 = 0.2 * (-0.1152) = -0.02306$$

Unit tersembunyi menjumlahkan delta input:

$$\delta_{-}$$
in<sub>1</sub> =  $\sum_{k=1}^{m} \delta_{1} W_{1k}$ ) = (-0,1152) \* 0,1 = -0,011521

$$\delta_{in_2} = \sum_{k=1}^{m} \delta_{i} W_{2k} = (-0.1152) * 0.3 = -0.034562$$

$$\delta \text{ in}_3 = \sum_{k=1}^m \delta_1 W_{3k} = (-0.1152) * 0.2 = -0.023041$$

$$\delta_{in4} = \sum_{k=1}^{m} \delta_{i} W_{4k} = (-0.1152) * 0.1 = -0.011521$$

$$\delta_{in_5} = \sum_{k=1}^{m} \delta_{i} W_{5k} = (-0.1152) * 0.2 = -0.03041$$

Hitung informasi *output* dengan persamaan :

$$\begin{split} &\delta_{1} = \delta_{-} \text{in}_{1} * (\frac{1}{1 + e^{-z_{-} i n_{1}}}) * [1 - (\frac{1}{1 + e^{-z_{-} i n_{1}}})] \\ &\delta_{1} = (-0.011521) * (\frac{1}{1 + e^{--0.2583}}) * [1 - (\frac{1}{1 + e^{--0.2583}})] = -0.002833 \\ &\delta_{2} = \delta_{-} \text{in}_{2} * (\frac{1}{1 + e^{-z_{-} i n_{2}}}) * [1 - (\frac{1}{1 + e^{-z_{-} i n_{2}}})] \\ &\delta_{2} = (-0.034562) * (\frac{1}{1 + e^{-0.1427}}) * [1 - (\frac{1}{1 + e^{-0.1427}})] = -0.008597 \\ &\delta_{3} = \delta_{-} \text{in}_{3} * (\frac{1}{1 + e^{-z_{-} i n_{3}}}) * [1 - (\frac{1}{1 + e^{-z_{-} i n_{3}}})] \\ &\delta_{3} = (-0.023041) * (\frac{1}{1 + e^{-0.401}}) * [1 - (\frac{1}{1 + e^{-0.401}})] = -0.005535 \\ &\delta_{4} = \delta_{-} \text{in}_{4} * (\frac{1}{1 + e^{-z_{-} i n_{4}}}) * [1 - (\frac{1}{1 + e^{-z_{-} i n_{5}}})] \\ &\delta_{4} = (-0.011521) * (\frac{1}{1 + e^{-0.5854}}) * [1 - (\frac{1}{1 + e^{-0.5854}})] = -0.002647 \\ &\delta_{5} = \delta_{-} \text{in}_{5} * (\frac{1}{1 + e^{-z_{-} i n_{5}}}) * [1 - (\frac{1}{1 + e^{-z_{-} i n_{5}}})] \\ &\delta_{5} = (-0.03041) * (\frac{1}{1 + e^{-0.50182}}) * [1 - (\frac{1}{1 + e^{-0.50182}})] = -0.005412 \end{split}$$

Untuk satu iterasi menggunakan metode Backpropagation hasilnya 0,64884 dengan jumlah kuadrat error = 0,6257, maka hasil yang dicapai belum sesuai dengan target. Karena memiliki selisih -0,6028 sehingga harus dilakukan iterasi lagi hingga convergen atau sampai maksimum *epoch* atau kuadrat *error* < target *error* (0,01).

Lakukan iterasi ulang dengan cara yang sama dan update inputan hingga iterasi ke 82 dan target *error* (0,01) tercapai seperti dibawah ini.

#### JARINGAN SYARAF TIRUAN MEMPREDIKSI JUMLAH KEBUTUHAN SEMEN PADA TOKO BANGUNAN BINTANG MAKMUR MENGGUNAKAN METODE BACKPROPAGATION

$$Y_1 = \frac{1}{1 + e^{-y_- i n_1}} = \frac{1}{1 + e^{-(-0.1081605426)}} = 0.2532$$

Cek *error* (iterasi berhenti bila *error*<0,01)

Error lapisan  $Y_1 = 0.1441 - 0.2532 = -0.1091$ 

Jumlah kuadrat  $error = (-0.1091)^2 = 0.01190$ 

Dari hasil perhitungan di atas maka hasil prediksi jumlah kebutuhan semen andalas untuk bulan Januari pada tahun selanjutnya yaitu 0,2532 atau 2532, dengan demikian jumlah prediksi kebutuhan semen andalas sebesar 2532 sak.

# 4. KESIMPULAN

Sistem yang akan dibangun menggunakan Jaringan Syaraf Tiruan (*Artificial Neural Network*) yang merupakan bagian dari ilmu kecerdasan buatan yang sudah banyak digunakan untuk menyelesaikan berbagai macam masalah yang berhubungan dengan prediksi atau peramalan dengan pemanfaatan Metode *Backpropagation*. Sistem dirancang dengan aplikasi pemerograman MATLAB. Dari hasil penelitian yang telah dilakukan, didapatkan bahwa jumlah kebutuhan semen andalas untuk bulan Januari pada tahun selanjutnya yaitu 0,2532 atau 2532, dengan demikian jumlah prediksi kebutuhan semen andalas sebesar 2532 sak. Dari hasil yang didapatkan tersebut disimpulkan bahwa metode *Backpropagation* dapat memprediksi data semen yang di proses.

#### DAFTAR PUSTAKA

- Damanik, E. H., Irawan, E., & Rizki, F. (2021). Jaringan syaraf tiruan untuk memprediksi nilai siswa SMA menggunakan backpropagation. *Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA)*, 4\*(2), 1–7. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v4i2.1500
- Evriyantino, Y., & Setiawan, B. (2019). Prediksi permintaan semen dengan metode fuzzy time series. *Teknologi Informasi dan Ilmu Komputer*, 3\*(9).
- Hasanati, Z., & Meidelfi, D. (2020). Kajian implementasi jaringan syaraf tiruan metode backpropagation untuk deteksi bau. *Jurnal Aplikasi Komputer dan Teknologi*, 1\*(2). https://doi.org/10.52158/jacost.v1i2.113
- Juliafad, E., Ardila, W., Putra, R. R., & Rani, I. G. (2022). Faktor pengali kuat tekan aktual terhadap prediksi kuat tekan hasil hammer test. *CIVED*, *9*(3). https://doi.org/10.24036/cived.v9i3.119916
- Ramli, Nurhayati, & Saragih, R. (2021). Jaringan syaraf tiruan memprediksi kebutuhan alat suntik medis di rumah sakit menggunakan backpropagation (Studi Kasus: RSU Bathesda). *JIKSTRA*, 3(1).

- Riansah, R. M., Sembiring, R. W., & Masruro, Z. (2019). Jaringan syaraf tiruan dalam memprediksi jumlah pelanggan PT. Telkom Akses Area Sumbagut menggunakan metode backpropagation. *Prosiding Seminar Nasional Riset Informasi*, 1. https://doi.org/10.30645/senaris.v1i0.87
- Rohayani, H., Wibowo, F., & Anwar, M. (2022). Prediksi penentuan program studi berdasarkan nilai siswa dengan metode backpropagation. *Jurnal Sistem Informasi dan Riset*, 3\*(4), 122–132.
- Satria, B. (2018). Prediksi volume penggunaan air PDAM menggunakan metode jaringan syaraf tiruan backpropagation. *Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi*), 2\*(3). https://doi.org/10.29207/resti.v2i3.575
- Sianipar, M. P., Sumarno, & Tambunan, H. S. (2021). Implementasi jaringan syaraf tiruan backpropagation untuk memprediksi jumlah pemasangan instalasi air pada PDAM Tirtauli Pematangsiantar. *TIN Terapis Informatika Nusantara*, 1\*(9), Februari 2021.
- Siregar, A. C., & Octariadi, B. C. (2021). Perbandingan metode jaringan syaraf tiruan pada klasifikasi motif kain tenun Sambas. *CYBERNETICS*, 4(02). https://doi.org/10.29406/cbn.v4i02.2489
- Sonang, S., Purba, A. T., & Sirait, S. (2022). Prediksi prestasi mahasiswa dengan menggunakan algoritma backpropagation. *Jurnal Teknik Informatika dan Komputer*, 5\*(1), 67–77. https://doi.org/10.37600/tekinkom.v5i1.512
- Yuniati, F. (2021). Aplikasi jaringan syaraf tiruan untuk memprediksi prestasi siswa SMU dengan metode backpropagation. *Universitas Islam Negeri Sunan Kalijaga*, 6\*(1), 1–9.