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Abstract. High voltage deviation, State of charge (SOCs) divergence, and iﬂa;ﬂopria!e load/power sharing are
some challenges that DC microgrids face. These problems can be rectified easily if the control algorithm is
designed based on the other units' data. However, wiilization @ommunication links has some disadvantages

ﬁls- paper, a novel communicgemn-free control
method is presented. In this method, the droop gain is digged into two parts. The first part of the droop gain is

which make them improper in many cases. Regarding that, in

selected according to the line resistance in such a way, that the effect of line resistance on current sharing is
omitted, while the second part is considered for balancing SOCs. Regarding that, it is deff as a function of
SOC such that the higher SOC unit injects more and absorbs less current. Comparing the simulation regmfts of
the proposed method with other methods proves that the proposed method can balance SOCs and re’a’nc':% DC
bus voltage deviation like the SOC-based method. Besides, it can share current properly like the virtual resistance
method.

Keywords: Renewable energy sowrces (RES), DC microgrid, SOCs balancing, current sharing, Voltage recovery

1. INTRODUCTION

Many problems such as environmental issues, increase in the need of industries for
energy, enhancing fuel costs, and reduction in fossil fuel resources force countries to pay more
attention to renewable energy sources (RES). Among the RESs wind and solar are more
attractive because they have low maintenance costs, a wide range of capacity, fast return on
investment, accessibility, etc. [1,2].

The power produced by the RESs has fluctuations as the nature of the wind speed, solar
irradiance, and temperature changes. In this condition, the RES influences the grid power
quality or in the worst case it may lead it to instability. Besides, during night and when the
wind speed is very low, they cannot inject any power into the grid. As a result, another source
of power should be considered to satisty the loads. Regarding these matters, it is suggested to
use at last an energy storage system (ESS) along with RESs to absorb power fluctuations in
case of power variations and to satisfy the loads when RESs power is too low.

The set of RESs, loads, and ESS introduces a new concept called 'microgrid'. The
micmgrid operate in both the grid-connected and islanded modes. In grid-connected mode,
the ESS just absorbs the power fluctuation and regulates its SOC while in islanded mode it is

responsible for satisfying the load demand and the microgrid power quality.
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When the microgrids are far from the utility grid, they can have different frequencies.
Many loads such as LEDs, motors drive, TVs, computers, and energy storage units (ESU) like
batteries, capacitors, SMEs, and some RESs as PVs are more compatible with DC systems. In
this condition, if the CD microgrid is designed for the system more benefits can be obtained.
Generally, DC microgrids have higher reliability, more flexibility, expandability, and
efficiency. Additionally, they are free from expected problems such as frequency, phase,
harmonic, synchronization, and reactive power. They are the reasons why the DC microgrids
are preferred more in recent years [3-6].

Along with these benefits, the DC microgrids suffer from some disadvantages, the most

critical of them are [7-9]:

SOCs divergence
Imbalance ESUs loading
High DC bus voltage deviation

Many control methods are introduced in the literature to address these shortcomings.
Totally, these methods are classified into three categories. They are, centralized, distributed
and decentralized.

In centralized methods, all units set their current via a droop or a PI controller to prevent
system instability [10-12]. After that, the central controller adjusts the ESU operation point
according to the data collected from the loads, RSSs, and all ESUs. For instance, in [13] a
robust control method is presented in which a central controller calculates the power of ESUs
and RESs such that not only the stability is ensured but also the microgrid power quality is
satisfied when the communication system faces with some delay. In [14] a central controller
calculates the load power (EVs charge power) and ESUs current and regulates the voltage of
DC bus according to the microgrid status, ESUs SOC, and electricity price. In [15] a central
controller determines the ESUs operation point through an optimization process based on the
data collected from the ESUs. In this method, If ESUs cannot satisfy the microgrid
requirements, the central controller warrants the system stability by reducing the generation
power and disconnecting some inessential loads. As can be seen, these methods rely on
communication links and central controllers which makes them more expensive, less flexible
and expandable, and more effective against cyber attacks.

Similar to the centralized methods, distributed methods use local parameters in the first
layer of their control algorithm. Next, all units exchange some information with their

neighbors. After that, all ESUs manipulate their operation point according to the neighbor's
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data and predefined aims (SOCs balancing, proper current sharing, and Voltage recovery). The
more data exchanges between ESUs, the more aims can be defined for units [16-18].

For example, in [19-20] only the data of SOCs are communicated. Hence this method
only can balance SOCs. As the SOCs variation is not too fast, therefore a low bandwidth
communication link can be utilized which has less cost. In [21-22] the voltage and SOCs are
exchanged which means that these methods can regulate the DC bus voltage drop along with
balancing ESUs SOC. The authors in [23-24] suggest methods that can load ESUs properly
and reduce DC bus voltage drop with a communication system that only transfers ESUs current.
In [25-26] both the ESUs current and SOC are communicated therefore these methods benefits
of proper current sharing and SOCs convergence. It should be noted the communication
systems used in [25-26] are stronger than the system used in [19-22] as they are exchange more
data. Resultantly they are more expensive and complicated.

Similar to the centralized method, distributed methods are dependent on communication
systems which make them inappropriate for widespread DC microgrids where the units are far
from each other. Besides they have low expandability, flexibility, reliability and lack of plug
and play capability and high cost and complexity.

To get rid of the problems associated with communication-based methods, Many
researchers suggest methods which are not rely on other units data. The conventional droop is
one of them. In this method, the unit voltage is set according to its current, and the droop gain
depends on the unit capacity and allowable DC bus voltage drop [27].

The conventional droop cannot balance SOCs as they are not involved in the ESUs power
specification. A cluster of droop methods called SOC-based method are introduced to tackle
this problem. In these methods, the droop gains are adaptively changed according to the SOCs
uch that the higher SOC units absorb less and inject more current. Exponential, inverse, and
linear are some of the functions that can be defined for the droop gain [28-30].

The SOC-based methods rectify the problem of SOCs disparity and diminish the voltage
deviation, but they deteriorate the current sharing when the SOCs are low and ESS is charging
or SOCs are close to the upper limit and the microgrid faces power deficiency [31-32].

Many searchers refer to improper ESUs loading. Therefore, many solutions suggcstcd
the literature can be classified into several categories.

A group of methods called DC bus voltage signaling is suggested in [33-35]. In these
mcthod:'ﬁ: DC bus voltage is used as a signal and the ESUs and RESs operation mode (CCM
or VCM) and their reference current are specified according to this signal. Low power quality,

inappropriate reliability indices, and reducing RESs absorbed power are of these methods'
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drawbacks. Nonlinear and piecewise droop curves are suggested in [36-40] where the %up
gains are set according to the current such that the improper current sharing and voltage
deviation only improved in the high and low current respectively.

Signal injection is another technique to solve the DC microgrid shortcoming [41-43]. @
this method, a sinusoidal current is injected into the DC bus. After that, all units update their
operation point to enhance the microgrid performance. Deteriorating DC bus power quality,
requiring lines data, affecting the method accuracy by the loads and RESs, and needing high-
accuracy sensors are of these methods drawbacks.

As the improper current sharing is established by the lines resistance, it is suggested in
the virtual resistance methods that the droop gain is selected based on this parameter and
allowable voltage deviation [44-46]. Resultantly, this class of methods tackles the effect of the
lines resistance and loads ESUs proportionally. It should be noted in these methods neither
SOCs balancing nor voltage deviation reduction is considered. A summary of the advantages,
disadvantages, and capabilities of each method is presented in Table 1.

Table I: A comprehensive comparison of the literature on DC microgrids

Proper SOCs V?Its;age

Ref | current : deviation
o balancing q

sharing reduction

Communication Main
free | disadvantages

High cost-low
reliability,
flexibility, and
expandability
High cost-low
reliability,
flexibility, and
expandability
High current
deviation in
charge
X v X v (discharge)
mode when
SOCs are low
(high)
Non-optimal
utilization of
RES-Improper
reliability
indices, Low
power quality
Over-usg
v X v v' | ESUs are
connected to the

Centralized v v v X

Distributed v v v X

[28-

SOC based 30]

DC bus
voltage
signaling

[33-
35]

Non-linear | [36-
droop | 38]
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DC bus with low
resistance

Over-usi
. . ESUs are
PICCSWISC [ig_ v X v v' | connected to the
roop | 40] DC bus with low
resistance
Complexity-
Low power
: ality-

Signal | [41- L, L, L, . quat
injection | 43] x rcq“‘““iccu?f;
sensors, affected
by loads

Virtual | [44-
v v |
gsistancc 46] X X

oposed method v v v Zhl

As can be seen, some of these methods like SOC-based methods solve the problem of
SOCs balancing but they don’t improve voltage deviation and, in some cases, they deteriorate
current sharing. In the contrary, some methods like virtual resistance improve current sharing
but don’t have any effect on SOCs balancing and voltage deviation reduction. Regarding these
matters in this paper a method is considered that cover the shortcoming of'the both the virtual
resistance and SOCs balancing methods. The main achievements, including contributions of
the proposed method, n be summarized as follows.

e The proposed method manipulates the current of ESUs according to their SOCs in both
the charge and discharge mode to benefit SOCs balancing capability.

e A part of the droop gain is considered for rectifying the effect of the line resistance.
Through this part, the proposed method is equipped by the proper current sharing.

e Compared to the other communication-less methods, the proposed method has less
voltage deviation.

e The proposed method does not require other units of data (communication-free), which
means that it is proper for geographically dispersed DC microgrids.

e rest of this paper is structured as follows. The system structure and the problems
engaged with the DC microgrids are explained in section 2. The proposed control method is
presented in section 3. Section 4 is considered to perform the performance of the proposed
method. Besides some comparisons are made which involved into this scctiomﬂally, section

5 concludes the paper.
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2. System Description and Problems Explanation
21
DC microgrid is a set of some DGs, Loads, and ESUs connected to a common DC bus.
DGs feed the loads through the DC bus and their mismatch is absorbed from or injected to the
15

ESUs. The general structure of a wide spread DC microgrid is depicted in Fig. 1.

Fig. 1: A typical DC microgrid
Whether the microgrids are equipped by the communication system or not, they should
be controlled by the local parameters first of all to prevent system instability in case of load or
power variation. A droop controller can satisfy this requirement. Regarding that the voltage of
the unit is spcciﬁcdy (1).
1

V — V _ Ridmap I}. (1)

i = Ve
Where, V¥, and ij. are the output and nominal voltage, / is the injected current, and Rr.dm”’”

is the droop gain calculated according to allowable voltage deviation (AVmax

) and the unit

capacity (1'™").
AV
R = o )

?ig. 2 shows a simplified electrical model of a EC microgrid composed of 2 ESUs with the
same capacity. The loads power is more than that of the RESs which means that ESUs

are discharging.
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ESU 1 ESU 2
R . TR ]
A ﬁh 1 Ahﬁ 4 1
: Gzl ,VX.\' e droop |
| R | R R R |
| . i+ . “ | !
+ 1 + |
— 1y I yi el
| [ M A | G P!
I | ) 1
| ] e | 1
| 1 = | |
——— 1 { R — :

|

SRonn oA 1 —— _
@g. 2: Electrical model of a simplified DC microgrid
The units current share is calculated by (3).

Im)m R::.mc + AV

I = max I 3
LR+ RI) 24V, A @)

As can be seen, the unit connected to the DC bus via less impedance exchanges more current.
Therefore, it reaches its upper and lower limit faster during charge and discharge modes,
respectively (SOCs divergence).

Fig. 3 shows the DC bus voltage deviation versus units current.

A
AV
DC—bus line
R.‘ In‘
|
AVrnax : ____,:7“
I e
. JI i droop
- |
- | RJ If
i l
- |
£ |
-~ Rewn 3
AR L= =}
-1 - line g nom
A pl“ﬂl + R.’ 1

Fig .3: DC bus voltage deviation in terms of ESUs current for conventional droop
As can be seen, when the units current is high, the voltage of the DC bus leaves its allowable
are, Based on Fig. 2 and equations (1) and (2), when the units current is greater than
AV AV + R:r”m]"m ), the voltage of the DC bus passes its limits.
By changing the droop gain, both the proper current sharing and kccping% bus voltage in the
permissible area can be obtained. Based on figure (2) and Equation (1), if the droop gains are
defined according to (4), the current will be shared properly. In this condition, the units current
share is exactly half of the /,. For the microgrids which have more ESUs with different
capacities, the units current is calculated by (5).

AV

Reww = Do _ e @

Im)m 1
i
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Fig. 4: DC bus voltage deviation in term of ESUs current in virtual resistance method

]TFOH’!
I = + I, (5)
Z ]}'
=1
e DC bus voltage drop is expressed by (6).
I,
A VDC—brm = N A Vmax (6)
Z I}'
=1

As ge DC bus voltage drop is the same for both ESUs, reducing the droop gain of a unit
will increase its current portion. Therefore, to have SOCs balancing capability, the higher SOC
unit should have higher droop gain during the charge period and less droop coefficient in
discharge mode. Resultantly, the droop gain should be defined as a function of SOC. An
equation which meets these requirements is expressed in (7).

J—— { SOC? AV, >0 -
r "|\DOD? AV, <0
Where DOD is depth of discharge calculated by (8)
DOD =1-SOC ®)
The value of M; should be determined such that for all values of SOC, the voltage of DC bus

stays in the permittable area. Hence, the value of M; must be set based on (9):
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_ Rj.fmclj.'mm AV _ R{’rm’-{.mm
i i max i i

» 2 9
I:wm DODl;ax } ( )

M. =min{ AV -
I:F()H’!SOC;)E‘

As SOC_ and DOD_  are0.9 and 0.8 respectively, therefore the value of M;is determined

by (10).
M, =1 .23(% —R™) (10)

Figure (5) shows the operation point of unit j for different values for SOC;.

ESUjin ESU jin
A Condition 1 4 Condition 2
AVH{' Py 1;‘!” > ‘!l”.l"‘
AV - S0C, < S0C, _
> : R™I,
. MSSOC! 1,
//1" ]:Jp f’(_._"" }-;p
- e

Fig. 5: The operation point of im unit for different values for SOC;i

As can be seen in charge mode, the units current portion increases as their SOC stands lower.
Substituting (10) in (7) and the result in (1) reveal that, for the microgrid presented in (1), the
units relative current is determined by (11)

123(AV / I;Um _R;’.”")Soczz + R;r'r:c'I;nJm

- nom line 2 line ynom AVD{-'—I"H-" >0
I | L23(AV,, /I~ R")SOC + R,
I - nom line 2 line y nom
5 1.23(AV, /1, Ri ,)DODz, + Ri sz AV, <0
123(A Vmax / Ilmm _ lec )DODI_ + lecllmm
(1)

Based on (11), the units have the same current when (SOC,=SOC>=0.9 and ESUs are charging).
In other cases, the microgrid does not benefit from proper current sharing.

for the microgrid presented in Fig. 2, although the SOCs balancing are achieved and DC bus
voltage deviations are controlled, but current sharing is deteriorated when SOCs are not
S0Cax.

As can be seen, all these methods cannot bring together, SOCs balancing, current sharing, and

voltage deviation improvement.
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3- PROPOSED METHOD
Figure 6 shows a geographically dispcrscdgc microgrid composed of several ESUs controlled

by the droop controller.

DC bus

line
R

vy
LU Ry =

ESU 1
ESUN

IT Vo

Fig. 6: }; simplified gc;graphically dispersed EC microgrid

Each ESU is connected to the DC bus through R, where R is:

R = R:”w + R:ﬁmp (12)

Where R:ﬁmp in the conventional droop, virtual resistance, and SOC-based method is
calculated by (2) , (4), and (7), respectively. Figure (7) shows units R:’q for different methods.

Conventional Virtual
droop resistance

Rs‘q —
AV, - =

[ nom

SOC-based

Fig. 7: R for different methods

According to Fig. 7, in the conventional droop the value of R’ is more than AV, /I™".
Thence, in some cases, especially when the units current is close to the nominal, the voltage of
DC bus passes its limit. In virtual resistance the value of R™is AV, /™" which means
that this method always keeps the voltage deviation less than its maximum till the current is

less than its nominal. In the SOC-based method, the value of R is less than AV /™",
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therefore the DC bus voltage always experiences less voltage deviation in comparison with
other methods. In other words, the SOC based method not only controls SOCs but also reduces
the DC bus voltage deviation dependent on the SOCs. The more/less the ESUs SOC in
discharge/charge mode is, the less the voltage deviation will be.

Another point is that only the virtual resistance has the same R . Therefore, only the virtual
resistance can share current properly. In other methods the proper current sharing depends on
the lines resistance.

By taking a deeper look to the sults, it can be concluded that virtual resistance rectifies
the SOC-based method disadvantages while SOC-based method covers the virtual resistance
shortcomings. To benefit of these methods capability, the units droop gain is divided into two
parts. The first one is considered to rectify the effect of lines resistance like virtual resistance
method while the second is defined in the function of SOC to balance SOCs. Resultantly, the

value of the R is:

R:’q :R:’rm’ + R:'mp + Rrhln (13)
Where R is a part of the droop gain which compensate for the lines resistance difference

while R:"“ is another part that is responsible for balancing SOCs calculated by (14). Fig. 8

shows Rf ? for the proposed method.

R.hln :M‘ SOCE AVDC'—hm‘ > 0 (14)
f | DOD? AV, <0
Rt
AKnax
g Sl R:':'ne
R.Cﬂ’rp
R

Fig. 8: R in the proposed method

Selecting a high value for R:’In , increase the units current share difference when their SOC is
different. As a result, the SOCs convergence speed will be enhanced. Besides, it reduces the

DC bus voltage deviations. On the other side, the system stability will be improved if
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R:rm + R:'mp is high. As can be seen, increasing the SOCs balancing speed (mimicking DC
bus voltage deviation) and improving the system stability are in conflict. Therefore, a trade-off
should be made to specify a proper value for each of them. Fig. 9 shows two system with
different values for R“ and R""™ .

A

System 1 System 2
AV R{HH@ + R;‘mp > M: SOC];_’]M R{H.-w + R:mp < M,I S()C1,2,ax
I”(H?} — : —
- H R:r’rse
R™
| M SOC?
Unit

Fig. 9: R for different values of M’r

According to the abovementioned, system 1 has more stability while system 2 has less voltage
deviation and more SOCs balancing speed.

Considering half of the allowable voltage deviation for balancing SOCs and the other half for
the current sharing is a reasonable choice. Regarding that, the value of the R:'mp and M; are

determined by (15) and (16).

R:.mp _ Osjfazmax _ R:r'nc (15)
M,-‘ = 70'?3:/%* (16)

By assuming the above values for R:mp, and M"r , the value of the DC bus voltage deviation is

determined by (17).
%(1 + 123SOC:2) AVDC-—fm.v > 0

v 0 51;/ I (17)
'T::axr'(l +1.23DOD?) AV ™ <0

By considering the nominal current for all units and different values for their SOC, the

DC bus voltage deviation always change in range of 0.51 to 1 of the AV . The least voltage
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deviation belongs to the condition that all SOCs are on top and ESUs are discharging. In
contrast, the DC bus voltage deviation is maximum when ESUs are charging and SOCs or on

top.

ﬂﬂ\rIULATION RESULTS
In this section, the proposed control method is simulated. To have a proper evaluation along
with the proposed method, conventional droop, SOC-based, and virtual resistance methods are
simulated and some comparisons are made. Besides, another section is added to investigate the
effects of the value of Rrhln and R:'mp on the system performance and the microgrid power

quality.

The simulated system structure and its parameters are expressed in Fig. 10 and Table II.

DC bus

ESU 1

Fig. 10: the simulated system topology

Table II: the simulated system parameters

parameter ESU1 ESU2 ESU3
Capacity (kVAh) 20 20 20
R'™e(Q)) 0.5 0.3 0.2
RP(QY) 0.12 0.32 0.42
Initial SOC (%) 60 30 30
droop
RT(Q) 0.75 0.95 1.05
virtual resistance
droop
R (Q_) 1.25 1.25 1.25
conventional
M; (Q) SOC-based 0.92 1.17 1.29
M, 0.76 0.76 0.76
SOC range (%) 20-90 Vref (Volt) 500
AVmax(Volt) 50

Section I: Evaluating the Proposed Method Capability
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|
Fig. 11 shows the current absorbed from or injected to the DC bus by 7, . A positive (negative)

value for I, means that a load (RES) is connected to this point. It is obvious that during the
first (second) half of the simulation time, the loads power is less (more) than that of the RESs,
therefore, from (0 to 30 min) ESS is charging while in (30 to 60 min) time interval it is

discharging.

=
=]

=2

=

— ldelLal
— el

Current (A)

w
=

— (e ad

-0i}

1 I 1 |
0 15 a0 45 6l
Time(min}

Fig. 11: the current absorbed from DC bus at different points
Sum of these currents should be compensated for the ESS. Figs. 12 and 13 show the ESUs

current and SOC for the conventional droop method.

40 L
= 20
E o
e sil 1
20 - —Eslz
Esl3
-4l
15 a0 45 &0
Time{min}
Fig. 12: the ESUs current in the conventional droop
100 - _—
— AL ]
— S 2
80 —ES S
g
60
2
vy
40
20 1 1 1
15 30 45 &0
Time{min)

Fig. 13: the ESUs SOC in the conventional droop
The least R* belongs to unit 3. Therefore, its current portion and its SOC variation are more
than others. This inequality in units current creates an SOC disparity (about 7 %) in charge

mode (0 to 30 min) which compensates in discharge period (30 to 60 min).
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The virtual resistance keeps the voltage deviation in the allowed area and eliminates the
problem of improper current sharing. Figs. 14 and 15 display the ESUs current and their SOC

when the microgrid is controlled by this method.

40

b
=

Current (A)

o
=3
T

N
=

1 1 |
15 30 45 i
Time{min}

Fig. 14: the ESUs current in the virtual resistance

S0C (%)

40 -

20 1‘5 3‘0 -1‘5 {;'-IU
Time(min)
Fig. 15: the ESUs SOC in the virtual resistance

Inequality in ESUs loading is caused by the lines resistance. As the effect of this
parameter is rectified by setting droop gains (equalizing the ESUs R®), it can be convinced
why the ESUs current are overlapped. In other words, the droop gains are selected based on
the lines resistance such that the currents are almost the same.

The result of ESUs current specification based on the lines resistance and voltage
deviation without considering SOCs is that the SOCs difference remains constant. The SOCs
difference at the first and end of the simulation time is 30 % which indicates this method is not
able to converge SOCs although its performance in proper current sharing is admirable.

For the SOC-based method, the currents and SOCs are as below.

a0
[ _,_—;—l—'_'_'_'_—-
g 30
R
El
= — 51
Rl —— ——E5U 2
] ESU 3
0 /,__—-—-—'
L L |
15 30 45 &0

Time(min)
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17
Fig. 16: the ESUs current gthe SOC-based method

100 - -
=5l 1
— 51 2
ao - —ESU 3
9
560
=}
vl
40 |
20 I L |
15 B 45 60

Time(min)
Fig. 17: SOCs in% SOC-based method
Comparing the results of ESUs 2 with 3 shows that in this method the lower SOC unit (ESU
3) absorbs more and injects less. This inequality in currents leads to a reduction in SOCs
difference from 30% to 11 % after an hour.
The effect of lines resistance on improper current sharing is revealed when a comparison is
made between the results of ESUs | and 3. Both these units have the same SOC but the current
of unit 3 is more. Although the lines resistance difference diverges the SOCs but the SOC-
based method holds them close together. In summary, the SOC-based method can keep SOCs
close together, but it cannot overlap them. The more the lines resistance difference is, the
further their SOC difference will be.
The results of the proposed method are expressed in Figs. 18 and 19. It should be noted that

half of the voltage deviation is considered for the R™ + R while the rest is assumed for R""

60 -
g:\ 30
=
=
=
g o
3
= —_—ESU 1
-30 ¢ ESU 2
- — .ESU3
6l
L 1 L ]
15 30 45 al

Time(min)

Fig. 18: the ESUs current in the proposed method
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Fig. 19: the ESUs SOC in the SOC-based method

The current of ESUs 1 and 3 is overlap. As the lines resistance is different and their SOC
is the same, 1can be concluded the proposed method eliminates the effect of lines resistance
like virtual resistance method. Both the currents and SOCs waveforms prove that the proposed
method is equipped by the SOCs balancing capability. During charge interval (0 to 30 min),
the current of ESUs 1 and 3 is more. Similarly, within discharge period, most of the current is
absorbed from ESU 2. The result is that the SOCs difference is reduced from 30 % to 17 %
after an hour.

The results of this part confirm that the proposed method benefits of proper current
sharing and SOCs balancing. The DC bus voltage for all methods is depicted in Fig. 20. In the
conventional droop in some cases that the units current is close to the nominal, the voltage of
DC bus passes its limits. For instance, during (0 to 15 and 45 to 60 min) the DC bus voltage
deviation is 23 % more than its maximum allowed. Hence, this method cannot satisfy the
microgrid power quality in perspective of the voltage deviations. In the virtual resistance

method, the DC bus voltage is limited to 450 to 550 volt (V_ + AV, ) when the currents are

inrange of (—/™" to I™"). It means that, by keeping the units current to less than their nominal,
it can be ensured the voltage of the DC bus stays in allowed area.

In standpoint of DC bus voltage deviation, SOC-based method has a good performance.
For the presented system the voltage deviation is less than 60% of its maximum where in the
virtual resistance and conventional droop it is 100% and 123% respectively. Just like the SOC-
based method, the proposed method reduces the DC bus voltage deviation. For the presented
system, the maximum voltage deviation is 38 volt (75% of its maximum).
It should be noted, the performance of the SOC-based method in rcductiong DC bus voltage
deviation is better than the proposed method. The reason is that in the proposed method a part

of DC bus voltage drop is occupied by R“™ which increases the DC bus voltage deviation.
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Fig. 20: The voltage of DC bus for different methods

Section II: Investigating the Effect of R™ and R™

The value of R™” (R"™ )affects the voltage deviation and SOCs balancing speed. Regarding
that, in this section different values for R"" are assumed to evaluate the effects of M, on the
SOCs balancing speed and voltage deviation. Fig. 21 shows the SOCs when 30 and 60 percent
of the maximum voltage deviation is considered for SOCs balancing.

The value of M, when X percent of AV, is considered for SOCs balancing is calculated by
(18):

= XA l:(rm:m ( 1 8)
1 2 nom
SOCnmIi
100
80 +
Fam)
=
g 60 6.9
v ESU 1 Mi'=093 50\9.
40 | ESU 2 Mi'=0.93 37.8
o G )
E5U 1 Mi'=0.46 35.0
ESU 2 Mi'=0.46
20 1 1 1
15 30 45 60

Time({min}

Fig. 21: SOCs variation for different values for M,
The initial SOCs difference is 30 %. After an hour it is reduced to 21.9% when M is 0.46 and

13.1% when it is 0.93. it shows that enhancing M, will reduce the SOCs convergence time.
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Fig. 22: DC bus voltage for different values for M,
,
By increasing the value of M, not only the speed of SOCs balancing is improved but also the

DC bus voltage deviation is reduced. Fig .22 displays the DC bus voltage.
tis obvious that the voltage of the DC bus when 60% of the AV, is considered for SOCs

balancing (Mi’=0.93) is closer to the nominal which means that increasing M, will improve
the DC microgrid power quality in perspective of voltage deviation.
As can be seen the proposed method inherits the advantages of the virtual resistance (proper

current sharing) and SOC-based (SOCs balancing and voltage deviation reduction) methods.

5-CONCLUSION
n this paper a novel control method for DC microgrid is introduced. First of all, an overall
structure of a widespread DC microgrid is presented. After that, it was explained for the
microgrids that the units are far from each other, local controllers should be designed. But
microgrids under such control methods face some problems such as SOCs divergence,
improper current sharing and, high voltage deviation. Next, the conventional droop, the virtual
resistance, and SOC based method are explained and it was cleared that each of these methods
are engaged with some of these problems. After that, a novel control method composed of
virtual resistance and SOC- based method is designed to benefit of these methods advantage
while eliminate their shortcoming. In this method the droop gain is divided into two parts. One
of this part satisfies the proportional current sharing like virtual resistance method while the
second is responsible for SOCs balancing. The simulation results confirm that the proposed
method has SOCs balancing and voltage deviation reduction capability like SOC-based method

while it benefits of proper current sharing like virtual resistance method.
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