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Abstract : Augmented Reality (AR) applications are rapidly gaining popularity across various industries, 
including education and marketing. By integrating real-world environments with virtual objects, AR enhances 
user understanding and information display for products. This paper explores Diminished Reality (DR) 
techniques, which are used to visually remove real objects from AR environments. Despite growing interest, much 
of the DR research predominantly focuses on maintaining consistency between real and virtual elements, 
particularly in texture handling on marker areas. Our study addresses the preservation of depth consistency using 
edge detection and planar segmentation to construct a depth map, essential for developing effective DR methods. 
We introduce a two-stage process involving depth mask construction, each stage equipped with error measurement 
for iterative refinement. Our proposed techniques, Planarity and Boundary Depth, are evaluated on a dataset of 
high-quality RGB images captured by digital cameras. Experimental results validate the effectiveness of our 
methods across various performance metrics, confirming the practicality of our approach in enhancing AR 
experiences. 
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1. INTRODUCTION 

Augmented Reality (AR) blends real and virtual environments on mobile screens, 

providing immersive experiences by integrating or augmenting real-world objects with 

virtual elements. Conversely, Diminished Reality (DR) techniques remove objects from 

the environment, seamlessly merging real and virtual scenes.[1] As AR expands in fields 

like marketing, new challenges arise, such as effectively hiding natural markers which 

consider both texture and light intensity. [2]Traditional DR approaches, which often 

overlook depth aspects, rely on either synthesizing textures for large areas or employing 

inpainting to fill gaps, but these methods struggle with edge defects. Our proposed 

improvements focus on incorporating depth information to refine these processes, utilizing 

predicted depth maps to enhance 3D understanding. Accurate depth estimation is vital, and 

our research introduces a comprehensive dataset of high-resolution RGB images for 

performance evaluation.[3], [4] We also review existing methods for constructing depth 

maps in DR, ranging from projection mapping and shape-from-shading techniques to 

advanced data-driven approaches using deep learning models.[5] These methods refine 

depth prediction and are assessed using a new metric that evaluates planarity and the 
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accuracy of plane orientations, overcoming the limitations of previous techniques and 

providing more reliable results for both indoor and outdoor scenes.[6], [7] 

 

2. SUGGESTED DEPTH MAP PREDICATION 

The Suggested method aims to remove targets from AR scenes using a single 

image. This approach utilizes a depth mask that emphasizes two-dimensional linear 

patterns, such as edges and object boundaries.[8] The method operates through a two-stage 

concurrent process, where each stage incorporates error measurement to instantaneously 

correct and refine the outcomes using Planarity and Boundary Depth techniques.[9] Our 

research paper introduces an innovative and efficient algorithm that leverages these 

characteristics to predict the depth map as illustrated in Figure (I). 

 

Figure 1. DRO method Diagram 

 

The accuracy of the predicted depth map largely depends on the error correction 

mechanism, which enhances the reliability of the resultant structure.[10] This corrected 

structure then informs subsequent processes. The data for this study was collected using a 

specific capture procedure, resulting in a dataset referred to as the independent mark 

images dataset, shown in Figure II. This structured approach ensures that each phase of 

depth map prediction is robust and reliable, providing confidence in the generated depth 

maps.[11], [12] 

 

Figure 2. The Suggested method samples part 
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Convert Planarity 

The proposed method involves gathering global statistics across the image at 

different depths by defining the Depth Range Interval (DRI). The DRI slices the depth data 

into distinct bins, each representing a one-meter depth interval to categorize objects based 

on their proximity—ranging from close to distant. These objects, typically planar 

structures such as floors, ceilings, and walls, cannot have their shape accuracy solely 

determined from global statistics[13]. However, such metrics allow for the individualistic 

performance evaluation of the predicted depths of these objects. Initially, a set of marked 

images representing various surface structures is utilized to establish a rough structure 

denoted by ൫𝑃{}, 𝑞{}൯ where the place and scale are predicted by the next equation (1): 

𝐸(𝑇) =  ∑ | 𝑃
 −  𝑇{}

 |ଶ               (1) 

 

Here, the points are represented in homogeneous coordinates.  (𝑇𝑚 ∈  𝑅4 ∗ 4) is 

a transformation matrix, represented by equation (2): 

𝑇  = ቂ
𝑐𝑅 𝑡
0 1

ቃ                   (2) 

 

𝑇   maps the object points from 3D space to the image plane. Calculating the 

depth of planar objects is challenging, primarily because objects that vary by smooth color 

gradients complicate the accurate approximation of a 3D plane's orientation. Additionally, 

distinguishing between a textured planar surface and a real depth discontinuity is difficult, 

represented by equation (3): 

𝜋 = (𝛿 , 𝑑)          (3) 

The representation of depth accuracy and the orientation of planar constructions 

are crucial for effective DRO. The orientation and flatness of predicted 3D planes 𝜋 are 

essential components. The depth map mask 𝑌 of a specific plane is projected onto 3D 

points  𝑃;  𝑖; 𝑗  where the fitted 3D point clouds are described by equation (4): 

𝜀ா
(𝑌) = 𝑉 ∑ 𝑑൫𝜋 , 𝑃,,൯ೖ,,ೕುೖ

ሯሴ ൨       (4) 
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The proposed planarity points and the associated errors are illustrated in Figure III. 

Figure 3. Suggested Measurements for Surface Planarity 

 

This equation calculates the planarity error, which is illustrated in Figure 3. The 

orientation correction is derived from the average distance between the estimated 3D point 

and its corresponding 3D plane, as shown in equation (5): 

𝜀ா
(𝑌) = 𝑎𝑐𝑜𝑠(𝛿 

் . 𝛿
∗)        (𝟓) 

 

Depth Boundary 

Indoor environments feature complex depth conditions, represented as gradient 

changes on depth maps. This research evaluates depth maps that maintain continuous depth 

points, avoiding texture-induced false discontinuities.[14], [15] 

Depth discontinuities are identified by comparing edges in predicted depth maps 

with ground truth, focusing on sharp edges and precise location accuracy derived from 

structured edge detection.[16] Edges in the 𝑌∗ 𝑏𝑖𝑛 are matched to the ground truth  𝑌∗ 𝑏𝑖𝑛  

using binary edge comparison and Euclidean distance, as detailed in Equation (6). 

𝐸∗  = DT(𝑌
∗ )            (6) 

Threshold values are set to ignore distances that exceed the specified limits. Depth 

boundary errors (DBEs) are defined according to the accuracy formula in Equation (7). 

𝜖ா
 (𝑌) =

1

∑ ∑ 𝑦,,
  𝑦,,



. 𝑒,
∗                      (7) 

A completeness error is defined to identify any missing edges in the predicted depth 

map, as specified in Equation (8). 

𝜖ா
(𝑌) =

1

∑ ∑ 𝑦,,
∗


  𝑦,,

∗



. 𝑒,           (8) 
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3. DATASETS SETTINGS 

The dataset was captured using a high-precision Nikon D7500 camera with 200 

mm and 35 mm lenses, 20.9 Megapixels, and 4K UHD video capability. Images were 

meticulously shot in high resolution with minimal noise, and specific points were manually 

selected to estimate the camera's 2D and 3D pose.[17] This setup facilitated testing the 

robustness of Diminished Reality (DRO) methods by providing diverse scene statistics 

like depth distribution, as shown in Figure (4).[18] Additionally, the dataset includes 

handheld images for each scene, supporting the validation of multi-view image algorithms 

that enhance depth map edges. This collection is specifically compiled to assess depth 

maps produced by DRO methods, with various scene samples and their characteristics 

outlined in Table I. 

Table 1. dataset description 

Script Video length in 
Seconds 

Frame No. No. of pixel 

Desk Room 2.60 sec 117 6016x4000 
Living Room 1.48 sec 49 4000x6016 
Lab Room 2.15 sec 84 6016x4000 
The Lobby 1.95 sec 68 6016x4000 
Plants 2.45 sec 110 4000x6016 
PC Lab 1.09 sec 43 4000x6016 
Session Room 2.55 sec 96 6016x4000 

 

Several manually created masks are displayed in Figure II.[19] The primary 

component of the dataset includes a total of 7 scenes with 567 frames. This dataset is a 

comprehensive and accurate collection of indoor images for depth prediction. 

 

4. ASSESSMENT OF EXPONENTS RESULTS 

The suggested DRO methods assess the robustness of depth maps, which are 

constructed using geometric and color transformations, as well as textured metrics for our 

reference dataset. Our research focuses on designing maps on planar surfaces to exploit 

key features beneficial for DRO. The dataset images confirm the accurate prediction of 

depth in images without requiring prior knowledge.[20] 
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Benchmark Location accuracy 

Benchmark error metrics are employed to assess the predicted depth : 

𝜕: max ቆ
𝑦

𝑦
∗ ,

𝑦
∗

𝑦
ቇ < 𝑡ℎ 

𝑎𝑏𝑠𝑜𝑢𝑙𝑡𝑒 𝑟𝑒𝑎𝑙 𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒(𝑟𝑒𝑙) =
1

𝑇
 ห𝑦, − 𝑦,

∗ ห
,

/𝑦,
∗  

𝑠𝑞𝑢𝑟𝑒 𝑟𝑒𝑎𝑙 𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒(𝑠𝑒𝑙) =
1

𝑇
 ቚ 𝑦,,

∗ − 𝑦,ቚ
ଶ

,
/𝑦,

∗  

𝑅𝑀𝑆 (𝑙𝑜𝑔) = ඨ
1

𝑇
 ห𝑙𝑜𝑔𝑦, − 𝑙𝑜𝑔𝑦,

∗ ห
ଶ

ூ,
 

𝑅𝑀𝑆 (𝑙𝑖𝑛𝑒𝑎𝑟) = ඨ
1

𝑇
 ห𝑦, − 𝑦,

∗ ห
ଶ

ூ,
       

As a result, variations in the outcomes are likely to emerge from the reported results 

of the DRO method evaluation, as shown in Table II. 

Table 2. differences metrics results 

Session Room rel see RMSliner RMSlog 
Desk Room 0.35 0.13 2.95 0.21 
Living Room 0.33 0.09 2.49 0.18 
Lab Room 0.27 0.07 2.85 0.19 
The Lobby 0.28 0.08 2.68 0.16 
Plants 0.26 0.09 2.55 0.18 
PC Lab 0.34 0.10 2.43 0.17 
Session Room 0.26 0.06 2.96 0.15 

 

In the experiments, the proposed method utilized fixed Range Intervals of 1m and 

measured RMS errors, which demonstrated consistent trends across datasets for the 

combined depth range. This supports the hypothesis that significant variations occur at a 

depth range of 10m. The proposed method exhibits generalization capabilities, producing 

consistent results on images taken from different cameras with varied intrinsic properties. 

Error metrics related to depth are presented in Figure V .[21], [22] 
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Figure 4. Allocation of depth values 

 

Guided Depth Error 

The Guided Depth Errors (DDEs) are used to indicate whether the predicted depth 

is estimated as too shallow or too deep compared to the actual depth as per the ground truth 

plan. The Guided Depth Errors (DDEs) are defined by the following equations: 

 

𝜀ா
ା (𝑦) =

ห൛𝑦,|𝑑௦(𝜋, 𝑃,) > 0˄𝑑௦൫𝜋, 𝑃∗
,൯ < 0ൟห

𝑇
 

𝜀ா
ି (𝑦) =

ห൛𝑦,|𝑑௦(𝜋, 𝑃,) < 0˄𝑑௦൫𝜋, 𝑃∗
,൯ < 0ൟห

𝑇
 

The +DDE and -DDE metrics are utilized to measure the deviation of predicted 

depth pixels from a reference depth. Specifically, these metrics determine whether the 

depths are farther or closer than a set reference depth of 3m, as shown in Figure V and 

Table IV.[23] 

 

Figure 5. Visual outcomes following the application of DBE 

 

The dataset provides a reliable means of assessing depth discrepancies along edge 

structures by calculating accuracy and completeness errors, denoted as 𝑎𝑐𝑐ா and 

𝑐𝑜𝑚𝑝ா respectively, as discussed in Section (2.2). The results are documented in the 

Table III.[24] True depth boundaries, which produce sharp edges, are displayed in Figure 

VII, while the presence of Absent edges is indicated by high values for 𝑐𝑜𝑚𝑝ா . 
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Table 3. Quantitative outcomes from implementing various metrics  

with the proposed method 

Session Room 𝜀ா
 𝜀ா

 𝜀ா
  𝜀ா

 𝜀ா
ି  𝜀ா

ା  

Desk Room 0.18 33.27 3.60 48.08 32.31 3.15 
Living Room 0.21 26.64 3.01 32.00 21.51 3.84 
Lab Room 0.17 21.64 3.16 27.47 23.44 1.46 
The Lobby 0.22 32.02 4.58 38.41 20.89 1.99 
Plants 0.22 31.90 2.32 16.85 16.38 2.35 
PC Lab 0.20 26.67 2.36 21.02 16.44 2.57 
Session Room 0.18 30.15 4.18 35.69 18.77 3.46 

 

The Evaluation of Location Depth Boundaries includes measures of accuracy such 

as +DBE and –DBE, detailed in Table 3. High-quality versions of the depth maps are 

provided.[25] The quality of reconstructed planar structures across various scenarios is 

assessed through Planarity Error, denoted as "plan and Orientation Error, referred to as "orie
PE  

detailed in Section 2.1. 

                              I - Plan [PE]                                                II - ORIE [PE] 

Figure 6. Measurement of non-planarity errors 

 

Data Enhancement 

A collection of enhanced images was extracted from the dataset to assess the 

geometric stability of the proposed approach. Geometrical transformations, including 

horizontal and vertical flipping of the input images, were applied, likely revealing minor 

details as depicted in Figure VII. 

 

Figure 7. Predicted depths 



  

 
e-ISSN: 3031-4089; p-ISSN: 3031-5069, Hal 34-45 

The dataset frequently displays pixels in the lower portion of the image, which 

significantly influences the estimated depth maps.[26], [27] A global relative error metric 

is used to evaluate the enhanced images for the DRO method, with results presented in 

Table IV. 

Table 4. the enhanced image dataset results 

scenarios input 
image 

Camera Geometric 
Lens reflex 

Contrast hue saturation 

Session Room 0.360 -0024 0.059 0.010 -0.001 -0.001 
Desk Room 0.318 -0.012 0.111 0.005 -0.001 -0.001 
Living Room 0.288 -0.017 0.110 0.002 -0.001 -0.001 
Lab Room 0.274 -0.018 0.079 0.001 -0.001 -0.001 
The Lobby 0.232 -0020 0.027 0.004 -0.001 -0.001 
Plants 0.336 -0.014 0.031 0.011 -0.001 -0.001 
PC Lab 0.248 -0.016 0..014 0.008 -0.001 -0.001 
 

 

5. CONCLUSIONS 

Augmented Reality (AR) applications are expanding across industries like 

education and marketing, using Diminished Reality Objects (DRO) to visually remove real 

objects from AR settings. This paper emphasizes maintaining depth consistency in edges 

and planar areas to develop effective DRO methods, introducing statistical features for 

depth map prediction alongside a novel dataset that compensates for the absence of ground 

truth data.  Experimental results evaluate the proposed methods against metrics such as 

edge preservation, accuracy of distance, and depth uniformity. A Reference Plane value 

helps differentiate accurately estimated depths from those that are over or underestimated. 

The results show that while the prediction of short distances achieves high accuracy (90% 

and 80%), the accuracy in predicting planar surfaces crucial for many applications remains 

inadequate. The experiments highlight relative errors across different image 

augmentations, underscoring the need for improvements in planar surface predictions. 
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