Analisis Churn Nasabah Bank Dengan Pendekatan Machine Learning dan Pengelompokan Profil Nasabah dengan Pendekatan Clustering

Authors

  • Arief Sulistyo Wibowo Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Rusindiyanto Rusindiyanto Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.61132/konstruksi.v2i1.43

Keywords:

Bank, Churn, Cluster, Machine Learning

Abstract

Rapid technological developments encourage the banking sector to continue to innovate so as not to be left behind. Tight competition in this industry is caused by customers' freedom to choose products and services that are considered more profitable. This phenomenon is known as Customer Churn, which is a condition where customers choose not to continue subscribing to a particular company. The method applied uses a machine learning approach and customer segmentation approach. The churn analysis results show that the machine learning model, especially the random forest model, has the highest level of accuracy with an F1-Score of 91%. This model has the potential to reduce churn rates from 20.4% to 5.61%, illustrating its positive impact. Apart from that, for the clustering results, the K-Prototype model was obtained for the clustering model with the highest Silhouette Score number of 0.1557 and 4 clusters were obtained.

 

 

References

Alfarizi, M. Riziq Sirfatullah, Muhamad Zidan Al-farish, Muhamad Taufiqurrahman, Ginan Ardiansah, and Muhamad Elgar. 2023. “Penggunaan Python Sebagai Bahasa Pemrograman Untuk Machine Learning Dan Deep Learning.” Karya Ilmiah Mahasiswa Bertauhid (KARIMAH TAUHID) 2(1):1–6.

Arifin, S. (2018). Analisis Faktor-Faktor Yang Mempengaruhi Churn Rate Pada Perusahaan Telekomunikasi Menggunakan Metode Support Vector Machines (Studi Kasus: PT Telekomunikasi XYZ)

Irmanda, Helena Nurramdhani, Ria Astriratma, and Sarika Afrizal. 2019. “Perbandingan Metode Jaringan Syaraf Tiruan Dan Pohon Keputusan Untuk Prediksi Churn.” JSI: Jurnal Sistem Informasi (E-Journal) 11(2):1817–25. doi: 10.36706/jsi.v11i2.9286.

Leni, Desmarita, Helga Yermadona, Ade Usra Berli, Ruzita Sumiati, and Haris Haris. 2023. “Pemodelan Machine Learning Untuk Memprediksi Tensile Strength Aluminium Menggunakan Algoritma Artificial Neural Network (ANN).” Jurnal Surya Teknika 10(1):625–32. doi: 10.37859/jst.v10i1.4843.

Mulia, Chiekal, Aliyah Kurniasih, Program Studi, Ilmu Komputer, and Cilandak Timur. 2023. “Teknik SMOTE Untuk Mengatasi Imbalance Class Dalam Klasifikasi Bank Customer Churn Menggunakan Algoritma Naïve Bayes Dan Logistic Regression.” 0:552–59.

Nabila, Zulfa, Auliya Rahman Isnain, and Zaenal Abidin. 2021. “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means.” Jurnal Teknologi Dan Sistem Informasi (JTSI) 2(2):100.

Susanto, Edy. 2022. “Analisis Cluster Pasien Covid-19 Berdasarkan Jumlah.” 9(2):817–26.

Yulianto, A. (2021). Prediksi Customer Churn Pada Bisnis Retail Menggunakan Algoritma Naïve Bayes. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 6(1), 41-47.

Downloads

Published

2024-01-05

How to Cite

Arief Sulistyo Wibowo, & Rusindiyanto Rusindiyanto. (2024). Analisis Churn Nasabah Bank Dengan Pendekatan Machine Learning dan Pengelompokan Profil Nasabah dengan Pendekatan Clustering. Konstruksi: Publikasi Ilmu Teknik, Perencanaan Tata Ruang Dan Teknik Sipil, 2(1), 30–41. https://doi.org/10.61132/konstruksi.v2i1.43

Similar Articles

You may also start an advanced similarity search for this article.