Optimizing Trocar Depth for Effective Land Reclamation in Karbala: Combating Waterlogging and Salinity
DOI:
https://doi.org/10.61132/konstruksi.v2i3.452Keywords:
Field trocars, land reclamation, waterlogging, salinity, irrigation efficiency, drainage system, crop hydrationAbstract
This research explores the significance of field trocars in land reclamation within Karbala Governorate's Karta-10 area, caused by waterlogging and salinity. Implementing a detailed reclamation strategy, the study underscores the necessity of a 2 to 2.5 meters burial depth for trocars to prevent water and salt-related issues, aligning with industry standards. The investigation discourages reducing trocar depth to cut costs, as it can result in capillary action and salt build-up or require deeper drainage to manage seepage. Findings indicate that shallow trocars reduce water storage capacity, impacting irrigation and crop hydration, whereas deeper trocars offer better management of drainage flow and spacing efficiency. The study indorses a universal trocar depth of 2 to 2.5 meters, accommodating various crops, thus guiding optimal trocar design and placement for effective land reclamation.
References
Abdel-Shafy, H., & Elnashar, R. A. (2002). Water issue in Egypt: Resources, pollution, and protection endeavors. Egyptian Journal of Water Resources, Retrieved from https://www.researchgate.net/profile/Hussein-Abdel-Shafy/publication/299579941_Water_issue_in_Egypt_Resources_pollution_and_protection_endeavors/links/5cc603d84585156cd7b990f7/Water-issue-in-Egypt-Resources-pollution-and-protection-endeavors.pdf
Abu-Zreig, M., Fujimaki, H., & Elbasit, M. A. A. (2020). Enhancing water infiltration through heavy soils with sand-ditch technique. Water, 12(5), 1312. https://doi.org/10.3390/w12051312
Bhavsar, D., Limbasia, B., Mori, Y., Imtiyazali Aglodiya, M., & Shah, M. (2023). A comprehensive and systematic study in smart drip and sprinkler irrigation systems. Smart Agricultural Technology, 5, 100303. https://doi.org/10.1016/j.atech.2023.100303
Fekete, B. M., & Bogárdi, J. J. (2015). Role of engineering in sustainable water management. Earth Perspectives, 2(1), 1–9. https://doi.org/10.1186/s40322-014-0027-7
García, A. I. A., & Santamarta, J. C. (2022). Scientific evidence behind the ecosystem services provided by sustainable urban drainage systems. Land, 11(7), 1040. https://doi.org/10.3390/land11071040
Hamzeh, S. M., Al-Degs, Y. S., Mashal, K., Salahat, M., & Al-Qinna, M. (2022). Spatial variations of urban soil salinity and related ions in arid and semiarid areas. Arabian Journal of Geosciences, 15(14), 1–16. https://doi.org/10.1007/s12517-022-10540-5
Hailu, B., & M.-J. Nat. Sci. Res. (2021). Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. Journal of Natural Science Research, 12(3). https://doi.org/10.7176/JNSR/12-3-01
Hayat, K., et al. (2020). Combating soil salinity with saline agriculture and phytomanagement using salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 50(11), 1085–1115. https://doi.org/10.1080/10643389.2019.1646087
Kacimov, A., et al. (2021). Water table rise in arid urban area soils due to evaporation impedance and its mitigation by intelligently designed capillary chimney siphons. Environmental Earth Sciences, 80(17), 1–17. https://doi.org/10.1007/s12665-021-09857-3
Lazem, L. F. (2023). New model of long-term changes in spatiotemporal patterns of water quality across Shatt-Al-Arab River by applying GIS technique, from 1976 to 2020. Arab Gulf Journal of Scientific Research, ahead-of-print. https://doi.org/10.1108/AGJSR-12-2022-0305
Mashal, K., Al-Qinna, M., Salahat, M., Al-Degs, Y. S., & Hamzeh, S. M. (2022). Spatial variations of urban soil salinity and related ions in arid and semiarid areas. Arabian Journal of Geosciences, 15(14). https://doi.org/10.1007/s12517-022-10540-5
Minhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 227, 105832. https://doi.org/10.1016/j.agwat.2019.105832
Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1–78. https://doi.org/10.37745/BJMAS.2022.0208
Mousavi, S. S., Karami, A., & Maggi, F. (2022). Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra L.) accessions under salinity stress. Frontiers in Plant Science, 13, 984944. https://doi.org/10.3389/fpls.2022.984944
Negm, A. M., Omran, E. S. E., & Abdel-Fattah, S. (2018). Update, conclusions, and recommendations for the ‘Unconventional Water Resources and Agriculture in Egypt.’ In Handbook of Environmental Chemistry (Vol. 75, pp. 509–532). https://doi.org/10.1007/698_2018_336
Osman, K. T. (2018). Management of soil problems. Management of Soil Problems, 1–474. https://doi.org/10.1007/978-3-319-75527-4
Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39–67. https://doi.org/10.1111/sum.12772
Tuğrul, K. M. (2019). Soil management in sustainable agriculture. In Sustainable Crop Production. https://doi.org/10.5772/intechopen.88319
van der Ploeg, J. D. (2022). The sociology of farming: Concepts and methods. The Sociology of Farming: Concepts and Methods, 1–313. https://doi.org/10.4324/9781003313274/sociology-farming-jan-douwe-van-der-ploeg
Vlotman, W. F., Smedema, L. K., & Rycroft, D. W. (2020). Modern land drainage: Planning, design and management of agricultural drainage systems. Modern Land Drainage. https://doi.org/10.1201/9781003025900
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Konstruksi: Publikasi Ilmu Teknik, Perencanaan Tata Ruang dan Teknik Sipil
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.