Improving the Performance of Soil Using Sustainable Geopolymer

Authors

  • Alaa Salim University of Thi-Qar
  • Alaa H. J. Al-Rkaby University of Thi-Qar

DOI:

https://doi.org/10.61132/konstruksi.v2i4.498

Keywords:

Geopolemerization, Soil Stabilization, Weak Soil, Deep Soil Mixing Columns

Abstract

Soil stabilization is a common technique to improve the mechanical properties of the soil in term of increasing its strength and decreasing the associated settlement. The new sustainable materials have been emerged as alternative to the traditional binders such as the cement and the lime. These materials can be used in the shallow and deep soil mixing. This paper reviewed the mechanism of the soil stabilization, the traditional binder and the sever impacts on the environment, the new echo-friendly materials, deep soil mixing technique, and the geopolemerization. The results showed significant enhancement of the shear strength of the geopolymerized silt where the strength was increased by more than 6 times. This enhancement may be attributed to the developed geopolymer-jel NASH that filled the voids, surrounded and cemented the soil particles. Consequently, this matrix considered as a novel precursor for using in the soil injecting and grouting technique. 

References

Abed, M. H., Abed, F. H., Zareei, S. A., Abbas, I. S., Canakci, H., Kurdi, N. H., & Emami, A. (2024). Experimental feasibility study of using eco-and user-friendly mechanochemically activated slag/fly ash geopolymer for soil stabilization. Cleaner Materials, 11, 100226.

Adhikari, B., Khattak, M. J., & Adhikari, S. (2019). Mechanical and durability characteristics of flyash-based soil-geopolymer mixtures for pavement base and subbase layers. International Journal of Pavement Engineering, 1-20.

Al-Refeai, T. O., & Al-Karni, A. A. (1999). Experimental study on the utilization of cement kiln dust for ground modification. Journal of King Saud University-Engineering Sciences, 11(2), 217-231.

Al-Rkaby, A. H. (2019c). Strength and deformation of sand-tire rubber mixtures (STRM): An experimental study. Studia Geotechnica et Mechanica, 41(2), 74-80.

Al-Rkaby, A. H. J. (2019b). Evaluating shear strength of sand-GGBFS based geopolymer composite material. Acta Polytechnica, 59(4), 305-311.

Al-Rkaby, A. H., Chegenizadeh, A., & Nikraz, H. R. (2019a). An experimental study on the cyclic settlement of sand and cemented sand under different inclinations of the bedding angle and loading amplitudes. European Journal of Environmental and Civil Engineering, 23(8), 971-986.

Al-Rkaby, A. H., Nikraz, H. R., & Chegenizadeh, A. (2017). Stress and deformation characteristics of nonwoven geotextile reinforced sand under different directions of principal stress. International Journal of Geosynthetics and Ground Engineering, 3, 1-11.

Al-Tabbaa, A., & Perera, A. S. R. (2005). Part I: Binders and technologies—Basic principles.

Arulrajah, A., Yaghoubi, M., Disfani, M. M., Horpibulsuk, S., Bo, M. W., & Leong, M. (2018). Evaluation of fly-ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58(6), 1358-1370.

Bosoaga, A., Masek, O., & Oakey, J. E. (2009). CO2 capture technologies for cement industry. Energy Procedia, 1(1), 133-140.

Cernica, J. N. (1995). Geotechnical engineering: Soil mechanics. John Wiley & Sons, Inc.

Chowdary, V. B., Ramanamurty, V., & Pillai, R. J. (2021). Experimental evaluation of strength and durability characteristics of geopolymer stabilised soft soil for deep mixing applications. Innovative Infrastructure Solutions, 6(1). https://doi.org/10.1007/s41062-020-00407-7

Cristelo, N., Glendinning, S., Fernandes, L., & Pinto, A. T. (2013). Effects of alkaline-activated fly-ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8(4), 395-405.

Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D., & Silva, R. (2012). Soil stabilisation using alkaline activation of fly ash for self-compacting rammed earth construction. Construction and Building Materials, 36, 727-735.

Davidovits, J. (2008). Geopolymer chemistry and applications (2nd ed.). Institute Geopolymere.

Dawood, A. O., Sangoor, A. J., & Al-Rkaby, A. H. (2020). Behavior of tall masonry chimneys under wind loadings using CFD technique. Case Studies in Construction Materials, 13, e00451.

Diaz, E. I., Allouche, E. N., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992-996.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42, 2917-2933.

Fatehi, H., Abtahi, S. M., Hashemolhosseini, H., & Hejazi, S. M. (2018). A novel study on using protein-based biopolymers in soil strengthening. Construction and Building Materials, 167, 813-821.

Fletcher, J. M., & Ross, S. L. (2018). Estimating the effects of friends on health behaviors of adolescents. Health Economics, 27(10), 1450-1483.

Flodin, N., & Broms, B. (1981). Historical development of civil engineering in soft clays. Elsevier Scientific Publishing Company.

Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes (pp. 1-19). Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.1.19

Hamzah, H. N., Al Bakri Abdullah, M. M., Yong, H. C., Zainol, M. R. R. A., & Hussin, K. (2015). Review of soil stabilization techniques: Geopolymerization method one of the new techniques. Key Engineering Materials, 660, 298-304. https://doi.org/10.4028/www.scientific.net/KEM.660.298

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. Materials Journal, 101(6), 467-472.

Hicks, R. G. (2002). Alaska soil stabilization design guide (No. FHWA-AK-RD-01-6B). Alaska Department of Transportation and Public Facilities, Research and Technology Transfer.

Huat, B. B. K., Prasad, A., Kazemian, S., & Anggraini, V. (2019). Ground improvement techniques. CRC Press.

Ingles, O. G., & Metcalf, J. B. (1972). Soil stabilization principles and practice (Vol. 11).

Khedari, J., Watsanasathaporn, P., & Hirunlabh, J. (2005). Development of fibre-based soil–cement block with low thermal conductivity. Cement and Concrete Composites, 27(1), 111-116.

Kitazume, M., & Terashi, M. (2013). The deep mixing method (Vol. 21). CRC Press.

Li, J., Shan, Y., Ni, P., Cui, J., Li, Y., & Zhou, J. (2024). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. Case Studies in Construction Materials, 20, e02687.

Papadopoulos, A. M., & Giama, E. (2007). Environmental performance evaluation of thermal insulation materials and its impact on the building. Building and Environment, 42(5), 2178-2187.

Porbaha, A., Tanaka, H., & Kobayashi, M. (1998). State of the art in deep mixing technology: Part II. Applications. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2(3), 125-139.

Provis, J. L. (2009). Activating solution chemistry for geopolymers. In Geopolymers (pp. 50-71). Elsevier.

Provis, J. L. (2014). Geopolymer schematic. Alkali Activated Materials: State of the Art Report, RILEM TC224-AAM, pp. 1-9. Springer/RILEM.

Puppala, A. J., & Pedarla, A. (2017). Innovative ground improvement techniques for expansive soils. Innovative Infrastructure Solutions, 2, 1-15.

Rangan, B. V., Hardjito, D., Wallah, S. E., & Sumajouw, D. M. (2005, June). Studies on fly ash-based geopolymer concrete. In Proceedings of the World Congress Geopolymer, Saint Quentin, France (Vol. 28, pp. 133-137).

Razeghi, H. R., Geranghadr, A., Safaee, F., Ghadir, P., & Javadi, A. A. (2024). Effect of CO2 exposure on the mechanical strength of geopolymer-stabilized sandy soils. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 670-681.

Salimi, M., & Ghorbani, A. (2020). Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Applied Clay Science, 184, 105390.

Sherwood, P. (1993). Soil stabilization with cement and lime.

Sherwood, P. (1993). Soil stabilization with cement and lime. London, UK.

Sreelakshmi, S., Huchegowda, B. K., Chithaloori, S., & Kumar, G. K. (2020). Strength and durability behaviour of geopolymer-stabilized soil. In Geotechnical Characterization and Modelling: Proceedings of IGC 2018 (pp. 585-591). Springer Singapore.

Sun, Y., Yang, Y., Niu, X., Yang, J., Deng, K., Song, S., & Wang, Y. (2024). Pavement performance of fine-grained soil stabilized by fly ash and granulated blast furnace slag-based geopolymer as road base course material. Journal of Materials in Civil Engineering, 36(7), 04024167.

Wang, S., Gao, X., Ma, W., Zhao, K., & Xu, P. (2024). Experimental study on static and dynamic characteristics of geopolymer-stabilized coarse-grained soils. Acta Geotechnica, 19(2), 717-739.

Xie, J., Zhang, J., Cao, Z., Blom, J., Vuye, C., & Gu, F. (2024). Feasibility of using building-related construction and demolition waste-derived geopolymer for subgrade soil stabilization. Journal of Cleaner Production, 450, 142001.

Zhang, J., Choi, C. E., Liang, Z., & Li, R. (2024). A generic framework for mix design of geopolymer for soil stabilization: Composition-informed machine learning model. Computers and Geotechnics, 170, 106322.

Published

2024-08-07

How to Cite

Alaa Salim, & Alaa H. J. Al-Rkaby. (2024). Improving the Performance of Soil Using Sustainable Geopolymer. Konstruksi: Publikasi Ilmu Teknik, Perencanaan Tata Ruang Dan Teknik Sipil, 2(4), 27–37. https://doi.org/10.61132/konstruksi.v2i4.498

Similar Articles

You may also start an advanced similarity search for this article.