Karakterisasi Struktur Mikro dan Sifat Mekanik Paduan Al-Mg-Si Hasil Squeeze Casting Setelah Perlakuan Homogenisasi

Authors

  • Venty Lestari Universitas Sriwijaya

DOI:

https://doi.org/10.61132/manufaktur.v3i3.1192

Keywords:

Al-Mg-Si, Hardness, Homogenization, Microstructure, Squeeze Casting

Abstract

Al–Mg–Si aluminum alloys are widely utilized in engineering applications due to their low density, excellent corrosion resistance, and mechanical properties that can be modified through heat treatment. This study investigates the effect of homogenization on the microstructure and hardness of Al–Mg–Si alloys produced by the squeeze casting process. The experimental procedure involved alloy melting, squeeze casting at 76 MPa using preheated metal molds, followed by homogenization at 400 °C for 4 hours. Microstructural characterization was performed using optical microscopy to examine the dendritic morphology and measure the secondary dendrite arm spacing (SDAS). Mechanical properties were evaluated through Vickers microhardness and Rockwell macrohardness testing. The results show that homogenization increases the SDAS from 32.59 μm to 36.88 μm and decreases the volume fraction of interdendritic phases from 15.51% to 13.57%. Furthermore, microhardness decreased from 50.22 VHN to 38.58 VHN, while macrohardness decreased from 54.60 HRE to 46.64 HRE. These reductions are attributed to the partial dissolution of Mg₂Si precipitates into the aluminum matrix during homogenization. Overall, this research provides valuable insight into the optimization of initial heat treatment parameters for Al–Mg–Si alloys produced by squeeze casting. The findings highlight the role of homogenization in improving microstructural uniformity and preparing the alloy for subsequent deformation processes such as cold rolling and extrusion, particularly for structural components used in mining and heavy transportation industries.

References

Arnoldt, A. R., Schiffl, A., Hoppel, H. W., & Osterreicher, J. A. (2022). Influence of different homogenization heat treatments on the microstructure and hot flow stress of the aluminum alloy AA6082. Materials Characterization, 191, 112129. https://doi.org/10.1016/j.matchar.2022.112129

Baruah, M., & Borah, A. (2020). Processing and precipitation strengthening of 6xxx series aluminium alloys: A review. International Journal of Materials Science, 1(1), 40–48. https://doi.org/10.22271/27078221.2020.v1.i1a.10

Beida, M., & Jarzebska, A. (2016). Characterization of precipitates in aluminium alloy 6013 after cold-rolling and annealing. Acta Physica Polonica A, 130(4), 988–990. https://doi.org/10.12693/APhysPolA.130.988

Couto, K. B. S., Claves, S. R., Van Geertruyden, W. H., Misiolek, W. Z., & Goncalves, M. (2005). Effects of homogenisation treatment on microstructure and hot ductility of aluminium alloy 6063. Materials Science and Technology, 21(2), 263–268. https://doi.org/10.1179/174328405X18584

Kurnia, R. (2016). Studi pengaruh canai dingin dan temperatur anil terhadap rekristalisasi serta sifat mekanik paduan Al-4.7Zn-1.8Mg (% berat) hasil squeeze casting (Skripsi). Universitas Indonesia.

Lenard, J. (2000). Introduction to aluminum alloys and tempers. ASM International.

Liu, C. L., Azizi-Alizamini, H., Parson, N. C., Poole, W. J., & Du, Q. (2017). Microstructure evolution during homogenization of Al−Mg−Si−Mn−Fe alloys: Modelling and experimental results. Transactions of Nonferrous Metals Society of China, 27(3), 747–753. https://doi.org/10.1016/S1003-6326(17)60085-2

Liu, Y. L. (1999). The complex microstructure in an as-cast Al-Mg-Si alloy. Materials Letters, 41, 267–272. https://doi.org/10.1016/S0167-577X(99)00141-X

Mayer, H., Papakyriaciu, M., Zettl, B., & Stanz-Tschegg, S. E. (2003). Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 25, 245–256. https://doi.org/10.1016/S0142-1123(02)00054-3

Österreicher, J. A., Kumar, M., Schiffl, A., & Schwarz, S. (2017). Secondary precipitation during homogenization of Al-Mg-Si alloys. Materials Science and Engineering: A, 690, 93–103. https://doi.org/10.1016/j.msea.2017.02.005

Ram, S. C., Bhushan, A., & Kumar, M. R. (2024). Influences of centrifugal force on the microstructure and mechanical behavior of centrifugally cast Al-Mg2Si. Silicon. https://doi.org/10.1007/s12633-023-02724-9

Redetic, T., Popovic, M., Alil, A., Markoli, B., Naglic, I., & Romhanji, E. (2022). Effect of homogenization temperature on microstructure and mechanical properties of Al-Mg-Si alloy containing low-melting point elements. Journal of Alloys and Compounds, 902, 163719. https://doi.org/10.1016/j.jallcom.2022.163719

Rivas, A. L., Muñoz, P., Camero, S., & Quintero-Sayago, O. (1999). Effect of the microstructure on the mechanical properties and surface finish of an extruded AA-6063 aluminum alloy. Advances in Materials Science and Technology, 2(1), 15–23.

Vargel, C. (2020). Chapter G.5 – 6xxx series alloys. In Corrosion of aluminium (pp. 485–495). https://doi.org/10.1016/B978-0-08-099925-8.00034-X

Wimmer, A. C. (2011). Influence of the homogenization treatment on the precipitation and dissolution of intermetallic phases in Al-Mg-Si alloys (Master’s thesis, Montanuniversität Leoben). https://pure.unileoben.ac.at/files/2202927/AC08702867n01vt.pdf

Zhu, X., Yang, H., Dong, X., & Ji, S. (2019). Effects of Mg and Si levels on microstructural inhomogeneity in die-cast Al-Mg-Si alloys. Journal of Materials Science, 54, 908–920. https://doi.org/10.1007/s10853-018-03198-6

Zolotorevsky, V., Nikolai, A., & Glazoff, M. (2007). Casting aluminium alloy. Elsevier. https://doi.org/10.1016/B978-008045370-5.50007-9

Downloads

Published

2025-09-30

How to Cite

Lestari, V. (2025). Karakterisasi Struktur Mikro dan Sifat Mekanik Paduan Al-Mg-Si Hasil Squeeze Casting Setelah Perlakuan Homogenisasi. Manufaktur: Publikasi Sub Rumpun Ilmu Keteknikan Industri, 3(3), 102–113. https://doi.org/10.61132/manufaktur.v3i3.1192