Analisis Ketelitian Horizontal Pengukuran Orthofoto Menggunakan DJI Mavic 3 Enterprise Metode RTK dan PPK
DOI:
https://doi.org/10.61132/globe.v3i3.1065Keywords:
Aerial Photography, PPK Correction, Orthophoto Quality, Flying Height, Water SignificanceAbstract
Aerial photo measurement aims to provide a real, fast, and interactive representation of the Earth's surface. Various methods of aerial photo acquisition and correction can be applied to obtain accurate results. The primary objective is to produce photos that present reliable and precise information consistent with actual conditions. A commonly used method in aerial photo mapping is the utilization of unmanned aerial vehicles (UAVs). The correction methods applied include direct correction, known as the Real-Time Kinematic (RTK) method, and post-processed correction, known as the Post-Processed Kinematic (PPK) method. This study aims to identify the highest horizontal orthophoto quality based on the Indonesian Geospatial Information Agency Regulation (BIG) No. 6 of 2018 concerning RBI map accuracy, by comparing the RTK and PPK methods, as well as variations in flight altitude during UAV data acquisition. The research conducted in Lemo II Village, Teweh Tengah District, North Barito Regency, Central Kalimantan Province revealed that the highest horizontal orthophoto quality was achieved using the PPK correction method at a flight altitude of 120 meters, with a horizontal RMSE value of 0.048 meters and an accuracy of 0.073 meters, which meets Class 1 standards at a 1:1000 scale. These values were obtained from tests conducted on 15 ICP points. Additional tests performed to determine the significance of model and method differences indicated that variations in flight altitude and photo correction methods have a significant impact on horizontal orthophoto quality.
References
Abdin, H. (2006). Penentuan posisi dengan GPS dan aplikasinya. Jakarta: Pradya Paeramitha.
Aber, J. S., Aber, S. E. W., Marzolff, I., & Ries, J. B. (2019). Small-format aerial photography and UAS imagery. Cambridge, MA: Candle Janco.
Ackermann, R. J. (1996). Quality control procedure for photogrammetric digital mapping, XVIIIth ISPRS Congress: Technical Commission IV: Mapping and Geographic Information Systems.
Al Amin, A. R. (2017). Optimasi sebaran titik GCP dan ICP pada proses ortorektifikasi citra resolusi tinggi untuk pembuatan peta skala 1:5000 (Studi Kasus: 1 scene citra Pleiades 033 Lumajang). Skripsi. Institut Teknologi Sepuluh Nopember, Surabaya.
Aryes, F., & Mandelson, E. (2006). Schaum’s outlines kalkulus (Edisi keempat). Jakarta: Erlangga.
Frazier, A. E., & Singh, K. K. (2021). Fundamentals of capturing and processing drone imagery and data. Oxon, OX: CRC Press.
Kurniawan, D. (2008). Uji T berpasangan. R Development Core Team. Statistical Computing. R Foundation for Statistical Computing, Wina, Austria.
Menteri Energi dan Sumber Daya Mineral. (2018). Keputusan Menteri Energi dan Sumber Daya Mineral tentang pedoman pelaksanaan kaidah teknik pertambangan yang baik (Keputusan Menteri ESDM No. 1827 K/30/MEM/2018). Kementerian Energi dan Sumber Daya Mineral Republik Indonesia.
Monjardín-Armenta, S. A., et al. (2024). Statistical comparison analysis of different realtime kinematic methods for the development of photogrammetric products: CORS-RTK, CORS-RTK + PPK, RTK-DRTK2, and RTK + DRTK2 + GCP. Open Geosciences, 16, 20220650. https://doi.org/10.1515/geo-2022-0650
Nuhrogo, & Laksono. (2017). Diktat mata kuliah fotogrametri I. Modul Pendidikan dan Pelatihan, Universitas Gadjah Mada, Yogyakarta.
Nuryadi, dkk. (2017). Dasar-dasar statistika penelitian. Yogyakarta: Gramasurya.
Octariady, J. (2014). Ortorektifikasi citra Quicbird menggunakan model elevasi digital dengan berbagai ketelitian dan berbagai jumlah titik kontrol tanah. Tesis. Universitas Gadjah Mada, Yogyakarta.
Peraturan Kepala Badan Informasi Geospasial. (2014). Pedoman teknis ketelitian peta dasar. (Peraturan Kepala Badan Informasi Geospasial Nomor: 15 Tahun 2014). Badan Informasi Geospasial.
Peraturan Kepala Badan Informasi Geospasial. (2020). Standar pengumpulan data geospasial dasar untuk pembuatan peta dasar skala besar (Peraturan Badan Informasi Geospasial Nomor: 1 Tahun 2020). Badan Informasi Geospasial.
Sari, A. (2014). Analisa perbandingan ketelitian penentuan posisi dengan GPS RTK-NTRIP dengan base GPS Cors BIG dari berbagai macam mobile provider didasarkan pada perdeseran linear (Studi Kasus: Surabaya). Tugas Akhir. Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur.
Shier, R. (2004). Statistics: 1.1 Paired t-tests. Mathematics Learning Support Centre.
Turner, D., Lucieer, A., & Watson, C. (2012). An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. School of Geography and Environmental Studies, University of Tasmania, Australia.
Vasconcelos, C. (2016). Geoscience education: Indoor and outdoor. Springer. https://doi.org/10.1007/978-3-319-43319-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Globe: Publikasi Ilmu Teknik, Teknologi Kebumian, Ilmu Perkapalan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



