Penerapan Metode C4.5 dan K-Nearest Neighbor untuk Klasifikasi Kelulusan Mahasiswa Berdasarkan Data Akademik

Authors

  • Dina Amalia Putri Universitas Pelita Bangsa
  • Naza Sefti Prianita Universitas Pelita Bangsa
  • Elkin Rilvani Universitas Pelita Bangsa

DOI:

https://doi.org/10.61132/jupiter.v3i4.1032

Keywords:

C4.5, Data Mining, Graduation Prediction, K-Nearest Neighbor, Student Graduation

Abstract

The issue of determining the number of students' graduation times is one of the important indicators in transmitting the quality and effectiveness of the higher education process in universities. The rate of on-time graduation not only impacts accredited institutions, but also becomes a concern for campus management in designing learning strategies and academic guidance. This study aims to apply and compare two classification algorithms in data mining, namely C4.5 and K-Nearest Neighbor KNN, in predicting the accuracy of students' graduation times. Predictions are made based on academic attributes such as Grade Point Average GPA, number of credits that have been achieved, and Semester Grade Point Average IPS as input variables. The method used in this study is Knowledge Discovery in Database KDD which includes data selection, preprocessing, transformation, data mining, and evaluation of results. The study was conducted using the RapidMiner tool, with a dataset of 279 Informatics Study Program students from the 2015 to 2019 intake. The data was classified into two categories: "graduated on time" and "not graduated on time". The test results showed that the KNN algorithm provided better performance compared to C4.5. KNN produced an accuracy of 76.08%, with a precision of 73.11% and a recall of 41.92%. Meanwhile, the C4.5 algorithm produced an accuracy of 73.49%, with a precision of 64.62% and a recall of 41.89%. This difference in accuracy indicates that KNN is more effective in capturing patterns in the data and providing more accurate predictions in this context. Thus, the KNN algorithm can be considered a more optimal method to assist universities in predicting potential student admissions in a timely manner, thus enabling early intervention for students at risk of late graduation. This research also contributes to the development of data mining-based academic decision support systems in higher education.

References

Amri, Z., Kusrini, & Kusnawi. (2023). Prediksi tingkat kelulusan mahasiswa menggunakan algoritma Naïve Bayes, Decision Tree, ANN, KNN, dan SVM. Edumatic: Jurnal Pendidikan Informatika, 7(2), 187–196. https://doi.org/10.29408/edumatic.v7i2.18620

Anggresta, V. (2015). Analisis faktor faktor yang memengaruhi belajar mahasiswa Fakultas Ekonomi Universitas Negeri Padang. Journal of Economic and Economic Education, 4, 19-29. https://doi.org/10.22202/economica.2015.v4.i1.325

Azizah Adha, D. A. R., Allanda, A. N., & Fatmasari, D. A. (2023). Performansi algoritma C4.5 untuk prediksi kelulusan mahasiswa. Jurnal Cakrawala Informasi, 3(2). https://doi.org/10.54066/jci.v3i2.339

Devinta, M. (2015). Fenomena culture shock (gegar budaya) pada mahasiswa perantauan di Yogyakarta. Jurnal Pendidikan Sosiologi.

Fitriyanti, V., & Hermawan, D. (2021). Klasifikasi predikat kelulusan mahasiswa menggunakan algoritma C4.5. Jurnal Saintekom, 11(1), 45-52.

Hasibuan, T., & Mahdiana, D. (2023). Prediksi kelulusan mahasiswa tepat waktu menggunakan algoritma C4.5 pada UIN Syarif Hidayatullah Jakarta. SKANIKA, 6(1), 61–74. https://doi.org/10.36080/skanika.v6i1.2976

Kusnia, Y. (2017). Pengaruh karakteristik gender dan motivasi belajar terhadap prestasi belajar matematika siswa Kelas X IPA 1 di MAN 2 Semarang. (Tesis).

Purwanto, E., Kusrini, & Sudarmawan. (2024). Prediksi kelulusan tepat waktu menggunakan metode C4.5 dan K NN. Techno Jurnal Informatika, 15(2), 78-86.

Putri, S. A. H., Ekastini, & Akhir Putra, J. (2024). Analisis komparasi algoritma C4.5, Naive Bayes dan K Nearest Neighbor untuk memprediksi ketepatan waktu lulus mahasiswa. Jurnal Teknologi dan Ilmu Komputer Prima (JUTIKOMP), 7(2), 172–184. https://doi.org/10.34012/jutikomp.v7i2.5575

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann. https://doi.org/10.1016/B978-0-08-050058-4.50004-8

Rahmayanti, A., Rusdiana, L., & Suratno, S. (2022). Perbandingan metode algoritma C4.5 dan Naive Bayes untuk memprediksi kelulusan mahasiswa. Walisongo Journal of Information Technology, 4(1), 193–199. https://doi.org/10.21580/wjit.2022.4.1.9654

Saifudin, A., & Wahono, R. S. (2015). Pendekatan level data untuk menangani ketidakseimbangan kelas pada prediksi cacat software. Journal of Software Engineering, 1, 76-85.

United authors (Abu Tholib et al.). (2023). Comparison of C4.5 and Naive Bayes for predicting student graduation using machine learning algorithms. International Journal of Engineering and Computer Science Applications, 2(2), 71–78. https://doi.org/10.30812/ijecsa.v2i2.3364

Wati, E. F., & Rudianto, B. (2023). Penerapan algoritma KNN, Naive Bayes dan C4.5 dalam memprediksi kelulusan mahasiswa. FORMAT: Jurnal Ilmiah Komputer, 13(2), 90-97. https://doi.org/10.22441/format.2022.v11.i2.009

Widaningsih, S. (2019). Perbandingan metode data mining C4.5, Naive Bayes, KNN dan SVM untuk prediksi kelulusan mahasiswa. Jurnal Tekno, 8(1), 12-20.

Widaningsih, S. (2019). Perbandingan metode data mining untuk prediksi nilai dan waktu kelulusan mahasiswa Prodi Teknik Informatika dengan algoritma C4.5, Naïve Bayes, KNN dan SVM. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78

Downloads

Published

2025-07-31

How to Cite

Dina Amalia Putri, Naza Sefti Prianita, & Elkin Rilvani. (2025). Penerapan Metode C4.5 dan K-Nearest Neighbor untuk Klasifikasi Kelulusan Mahasiswa Berdasarkan Data Akademik. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 3(4), 256–267. https://doi.org/10.61132/jupiter.v3i4.1032

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.