Optimasi Pengenalan Posisi Plat Nomor Kendaraan Menggunakan Kombinasi Metode MSER Dan Harris Corner
DOI:
https://doi.org/10.61132/jupiter.v2i2.165Keywords:
Maximally Stable Extremal Regions, Harris Corner, License Plate, DetectionAbstract
The research proposes an innovative approach to identifying and positioning vehicle number plates using a combination of Maximally Stable Extremal Regions (MSER) and Harris Corner methods. The MSER method is used to detect stable regions on the vehicle number plate image. MSER has the ability to recognize areas that have significant contrast intensity, which often represents the characteristic of the number plate. After identifying the potential regions, the Harris Corner method was applied to determine the characteristic angles. The cross points on the number plate. The combination of these two methods allows for more accurate and reliable identification of the position of the number plate. In this study the author performs optimization by changing the preprocessing part and the part of the MSER method. In the preprosessing the author changes the morphological part of a filter, in the section of the method MSER adds input arguments such as ThresholdDelta, RegionAreaRange, and MaxAreaVariation. The results of this study are 99.27% accuracy, 82.73% precision and 83.14% recall. Previous studies were 98.85%, 67.61% and 79.66% recalls. Based on the results of these values, the study has successfully optimized previous studies.
References
Aguado, A. S., Montiel, E., & Nixon, M. S. (2002). Invariant characterisation of the Hough transform for pose estimation of arbitrary shapes. Pattern Recognition, 35(5), 1083-1097.
Ali, M. (2004). Pembelajaran Perancangan sistem kontrol PID dengan software MATLAB. Jurnal edukasi@ elektro, 1(1), 1-8.
Beis, J. S., & Lowe, D. G. (1997, June). Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (pp. 1000-1006). IEEE..
Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications (Foundations and Trends in Signal Processing Series Book 20).
Devi, P. A. R., & Rosyid, H. (2022). Pemaparan Materi Dasar Pengolahan Citra Digital untuk Upgrade Wawasan Siswa di SMK Dharma Wanita Gresik. Jurnal Abdi Masyarakat Indonesia, 2(4), 1259-1264.
Gonzalez, R. C., & Woods, R. E. (2002). Processing. New Jersey: Upper saddle river, 7458.
Grimson, W. E. L., & Lozano-Perez, T. (1987). Localizing overlapping parts by searching the interpretation tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, (4), 469-482.
Irawan, F. A. (2012). Buku Pintar Pemrograman Matlab. Media Pressindo.
Ktata, S., Khadhraoui, T., Benzarti, F., & Amiri, H. (2015). Tunisian license plate number recognition. Procedia Computer Science, 73, 312-319.
Lowe, D. G. (1987). Three-dimensional object recognition from single two-dimensional images. Artificial intelligence, 31(3), 355-395.
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing, 22(10), 761-767.
Maulana, H., Herumurti, D., & Yuniarti, A. (2018, July). Text based maximally stable extremal regions to detect vehicle plate location. In Proceedings (Vol. 1, No. 1, pp. 450-455).
MAULANA, H., & VISI, B. K. K. C. D. (2018). DETEKSI LOKASI PLAT NOMOR KENDARAAN MENGGUNAKAN METODE MAXIMALLY STABLE EXTREMAL REGIONS DAN HARRIS CORNER.
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592.
Sianipar, R. H. (2013). Pemrograman Matlab dalam contoh dan penerapan (Vol. 1). Penerbit INFORMATIKA.
Szeliski, R. (2022). Computer vision: algorithms and applications. Springer Nature.
Wang, R., Xia, Y., Wang, G., & Tian, J. (2015). License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature. Journal of Electronic Imaging, 24(5), 053011-053011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.