Physics Doctor Sensor

Authors

  • Rabi Noori Hammude General Directorate of Wasit Education

DOI:

https://doi.org/10.61132/jupiter.v2i4.361

Keywords:

Sensor Technology, Environmental Monitoring, IoT (Internet of Things), Daily Life Applications, Biological Sensors, Applications

Abstract

Physics Doctor Sensor technologies have improved the everyday life of human beings through their applications in almost all fields. Sensors are devices that detect changes in the source/environment and collect signals, and accordingly, the reaction is designed. There is a range of sources, including light, temperature, movements, and pressure etc., which may be used. A wide range of applications are utilized using innovative sensor technologies in lifestyle, healthcare, fitness, manufacturing, and daily life. In the medical field, the difficulty of taking medicine is eased by drug donors fitted with sensors. It reminds them to take medicine via a signal and supply the necessary medicine at the specified moment. In health care, older individuals, athletes, and risk patients benefit from modern sensor technology. The current industrial trends driving innovation include ultrasound, radar, and non-contact optoelectronic solutions and laser technology. The paper gives a brief overview of the numerous types of sensors that are utilized in everyday life. Various capabilities of sensors for day-to-day healthcare are discussed. Various features, associated nomenclature, and measures for sensors in day-to-day routine life are discussed diagrammatically and finally, the paper identifies and discusses twenty-two significant applications of sensors for daily life. Sensors also produce vital information and exchange data with other connected devices and administration systems when linked to a network. Thus, for the effective running of many companies, sensors are critical. Various types of sensors are used in our daily life, which is more accurate and makes quicker analysis.

References

M. Stikic, D. Larlus, S. Ebert, B. Schiele

Weakly supervised recognition of daily life activities with wearable sensors IEEE Trans. Pattern Anal. Mach. Intell., 33 (12) (2011), pp. 2521-2537.

H. Wu, M. Dyson, K. Nazarpour

Arduino-based myoelectric control: towards a longitudinal study of prosthesis use Sensors, 21 (3) (2021), p. 763.

S. Zhang, M.H. Ang, W. Xiao, C.K. Tham Detection of activities by wireless sensors for daily life surveillance: eating and drinking

Sensors, 9 (3) (2009), pp. 1499-1517

Y.G. Lim, K.H. Hong, K.K. Kim, J.H. Shin, S.M. Lee, G.S. Chung, K.S. Park Monitoring physiological signals using non-intrusive sensors installed in daily life equipment Biomedical engineering letters, 1 (1) (2011), pp. 11-20

K. Masai, Y. Sugiura, M. Ogata, K. Kunze, M. Inami, M. SugimotMarch). Facial expression recognition in daily life by embedded photo reflective sensors on smart eyewear Proceedings of the 21st International Conference on Intelligent User Interfaces (2016), pp. 317-326

A. Chen, J. Zhang, L. Zhao, R.D. Rhoades, D.Y. Kim, N. Wu, J. Chae Machine-learning enabled wireless wearable sensors to study the individuality of respiratory behaviours Biosens. Bioelectron., 173 (2021), Article 112799

J. Kim, N. Colabianchi, J. Wensman, D.H. GatesWearable sensors quantify mobility in people with lower-limb amputation during daily life IEEE Trans. Neural Syst. Rehabil. Eng., 28 (6) (2020), pp. 1282-1291

T. Steinmetzer, S. Wilberg, I. Bönninger, C.M. Travieso Analysing gait symmetry with automatically synchronised wearable sensors in daily life Microprocess. Microsyst., 77 (2020), Article 103118

M. Makikawa, N. Shiozawa, S. Okada Fundamentals of wearable sensors for the monitoring of physical and physiological changes in daily life In Wearable Sensors (2014), pp. 517-541 (Academic Press)

J. Botzheim, D. Tang, B. Yusuf, T. Obo, N. Kubota, T. Yamaguchi Extraction of daily lifelongs measured by smart phone sensors using neural computing

Procedia Computer Science, 22 (2013), pp. 883-892

H. Zhou, M. Wang, X. Jin, H. Liu, J. Lai, H. Du, A. Ma

Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes ACS Appl. Mater. Interfaces, 13 (1) (2021), pp. 1441-1451

B. Perriot, J. Argod, J.L. Pepin, N. Noury

A network of collaborative sensors for the monitoring of COPD patients in their daily life 2013 IEEE 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), IEEE (2013, October), pp. 299-302

A. Nait Aicha, G. Englebienne, K.S. Van Schooten, M. Pijnappels, B. Kröse Deep learning to predict falls in older adults based on daily-life trunk accelerometry Sensors, 18 (5) (2018), p. 1654

H. Zhou, Z. Wang, W. Zhao, X. Tong, X. Jin, X. Zhang, W. Chen Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers Chem. Eng. J., 403 (2021), Article 126307

Z.L. Wang Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives Faraday Discuss, 176 (2015), pp. 447-458

T. Huỳnh, U. Blanke, B. Schiele

September). Scalable recognition of daily activities with wearable sensors International Symposium on Location-And Context-Awareness, Springer, Berlin, Heidelberg (2007), pp. 50-67

M. Batool, A. Jalal, K. Kim Sensors technologies for human activity analysis based on SVM optimised by PSO algorithm 2019 International Conference on Applied and Engineering Mathematics (ICAEM), IEEE (2019, August), pp. 145-150

A. Tognetti, F. Lorussi, N. Carbonaro, D. De Rossi

Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life Sensors, 15 (11) (2015), pp. 28435-28455

A. Bag, N.E. Lee Recent advancements in development of wearable gas sensors Advanced Materials Technologies, 6 (3) (2021), Article 200088

R.J. Lemmens, Y.J. JanssenPotten, A.A. Timmermans, R.J. Smeets, H.A. Seelen Recognising complex upper extremity activities using body-worn sensors PloS One, 10 (3) (2015), Article e0118642

J. Fraden Handbook of Modern Sensors, vol. 3, Springer, New York (2010)

S. Rab, S. Yadav, A. Zafer, A. Haleem, P.K. Dubey, J. Singh, L. Kumar Comparison of Monte Carlo simulation, least-square fitting and calibration factor methods for the evaluation of measurement uncertainty using direct pressure indicating devices

Mapan, 34 (3) (2019), pp. 305-315

O.A. Postolache, S.C. Mukhopadhyay, K.P. Jayasundera, A.K. Swain (Eds.), Sensors for Everyday Life: Healthcare Settings, vol. 22, Springer (2016)

S. Rab, S. Yadav, A. Haleem, A. Zafer, R. Sharma, L. Kumar

Simulation-Based Design Analysis of Pressure Chamber for Metrological Applications up to 200 MPa (2021)

C.P. Nemarich Time-domain reflectometry liquid level sensors IEEE Instrum. Meas. Mag., 4 (4) (2001), pp. 40-44

F. Lucklum, B. Jakoby

Non-contact liquid level measurement with electromagnetic–acoustic resonator sensors Meas. Sci. Technol., 20 (12) (2009), Article 124002

E. Musayev, S.E. Karlik

A novel liquid level detection method and its implementation

Sensor Actuator Phys., 109 (1–2) (2003), pp. 21-24

J.E. Antonio-Lopez, J.J. Sanch Mondragon, P. LiKamWa, D.A. May-Arrioja Fiber-optic sensor for liquid level measurement Opt Lett., 36 (17) (2011), pp. 3425-3427

W. Xu, C. Yan, W. Jia, X. Ji, J. Liu Analysing and enhancing the security of ultrasonic sensors for autonomous vehicles

IEEE Internet of Things Journal, 5 (6) (2018), pp. 5015-5029

M. Suleiman, G.I. Saidu, M.I. Ilyasu, O.A. Adeboye, M. Hamza Ultrasonic fluid level measuring device Int. J. Res. Sci, 1 (1) (2015), p. 27

P.R. Childs, J.R. Greenwood, C.A. Long

Review of temperature measurement

Rev. Sci. Instrum., 71 (8) (2000), pp. 2959-2978

R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout

Materials for high-temperature acoustic and vibration sensors: a review

Appl. Acoust., 41 (4) (1994), pp. 299-324

V.K. Rai Temperature sensors and optical sensors

Appl. Phys. B, 88 (2) (2007), pp. 297-303

T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, T. Someya Ultra-flexible, large-area, physiological temperature sensors for multipoint measurements Proc. Natl. Acad. Sci. Unit. States Am., 112 (47) (2015), pp. 14533-14538

C. Liu, W. Ren, B. Zhang, C. Lv

The application of soil temperature measurement by LM35 temperature sensors Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, vol. 4, IEEE (2011, August), pp. 1825-1828

P. Kejık, C. Kluser, R. Bischofberger, R.S. Popovic

A low-cost inductive proximity sensor for industrial applications Sensor Actuator Phys., 110 (1–3) (2004), pp. 93-97

D. Goeger, M. Blankertz, H. Woern November). A tactile proximity sensor SENSORS, 2010 IEEE, IEEE (2010), pp. 589-594

Y. Ye, C. Zhang, C. He, X. Wang, J. Huang, J. Deng

A review on applications of capacitive displacement sensing for capacitive proximity sensor IEEE Access, 8 (2020), pp. 45325-45342

F. Dehkhoda, J. Frounchi, H. Veladi Capacitive proximity sensor design tool based on finite element analysis

Sens. Rev. (2010)

B. Osoinach Proximity capacitive sensor technology for touch sensing applications Freescale White Paper (2007), p. 12

Y. Zang, F. Zhang, C.A. Di, D. Zhu Advances of flexible pressure sensors toward artificial intelligence and health care applications Materials Horizons, 2 (2) (2015), pp. 140-156

R. Kumar, S. Rab, B.D. Pant, S. Maji

Design, development and characterisation of MEMS silicon diaphragm force sensor Vacuum, 153 (2018), pp. 211-216

C.M.A. Ashruf Thin flexible pressure sensors

Sens. Rev. (2002)

D. Tandeske Pressure Sensors: Selection and Application

CRC Press (1990)

S. Rab, S. Yadav, R.K. Sharma, L. Kumar, V.K. Gupta, A. Zafer, A. Haleem Development of hydraulic cross floating valve

Rev. Sci. Instrum., 90 (8) (2019), Article 085102

R. Kumar, S. Rab, B.D. Pant, S. Maji, R.S. Mishra

FEA-based design studies for development of diaphragm force transducers MAPAN, 34 (2) (2019), pp. 179-187

A. Ailamaki, C. Faloutos, P.S. Fischbeck, M.J. Small, J. VanBriesen An environmental sensor network to determine drinking water quality and security ACM Sigmod Record, 32 (4) (2003), pp. 47-52

M. Pule, A. Yahya, J. Chuma Wireless sensor networks: a survey on monitoring water quality J. Appl. Res. Technol., 15 (6) (2017), pp. 562-570

F. Adamo, F. Attivissimo, C.G.C. Carducci, A.M.L. Lanzolla

A smart sensor network for seawater quality monitoring

IEEE Sensor. J., 15 (5) (2014), pp. 2514-2522

K.S. AduManu, C. Tapparello, W. Heinzelman, F.A. Katsriu, J.D. Abdulai Water quality monitoring using wireless sensor networks: current trends and future research directions ACM Trans. Sens. Netw., 13 (1) (2017), pp. 1-41

T. Seiyama (Ed.), Chemical Sensor Technology, vol. 2, Elsevier (2013) vol. 2

J. Fonollosa, A. Solórzano, S. Marco Chemical sensor systems and associated algorithms for fire detection: a review

Sensors, 18 (2) (2018), p. 553

J.R. Stetter, W.R. Penrose Understanding chemical sensors and chemical sensor arrays (electronic noses): past, present, and futureSensor. Update, 10 (1) (2002), pp. 189-229

K.S. Johnson, J.A. Needoba, S.C. Riser, W.J. Showers Chemical sensor networks for the aquatic environment Chem. Rev., 107 (2) (2007), pp. 623-640

N. Yamazoe Toward innovations of gas sensor technology

Sensor. Actuator. B Chem., 108 (1–2) (2005), pp. 2-14

G. Korotcenkov Handbook of gas sensor materials Conventional approaches, 1 (2013)

H. Nazemi, A. Joseph, J. Park, A. Emadi

Advanced micro-and nano-gas sensor technology: a review

Sensors, 19 (6) (2019), p. 1285

A. Gaur, A. Singh, A. Kumar, A. Kumar, K. Kapoor

Video flame and smoke based fire detection algorithms: a literature review Fire Technol., 56 (5) (2020), pp. 1943-1980

N. Collings, N. Baker, W.G. WolberReal-time smoke sensor for diesel enginesSAE Trans. (1986), pp. 860-864

A.Z. Adamyan, Z.N. Adamian, V.M. Aroutiounian

Smoke sensor with overcoming of humidity cross-sensitivity

Sensor. Actuator. B Chem., 93 (1–3) (2003), pp. 416-421

D. Xu, Y. Wang, B. Xiong, T. Li

MEMS-based thermoelectric infrared sensors: a review

Front. Mech. Eng., 12 (4) (2017), pp. 557-566

L. Zhu, J. Suomalainen, J. Liu, J. Hyyppä, H. Kaartinen, H. Haggren A Review: Remote Sensing Sensors Multi-purposeful application of geospatial data (2018), pp. 19-42

Q. Li, Q. Zeng, L. Shi, X. Zhang, K.Q. Zhang

Bio-inspired sensors based on photonic structures of Morpho butterfly wings: a review J. Mater. Chem. C, 4 (9) (2016), pp. 1752-1763

C.F. Baulsir, R.J. Simler Design and evaluation of IR sensors for pharmaceutical testing Adv. Drug Deliv. Rev., 21 (3) (1996), pp. 191-203

A. Rajgarhia, F. Stann, J. Heidemann

Privacy-sensitive monitoring with a mix of IR sensors and cameras Proceedings of the Second International Workshop on Sensor and Actor Network Protocols and Applications, vol. 2004 (2004, August), pp. 21-29

M. Bigas, E. Cabruja, J. Forest, J. Salvi Review of CMOS image sensors Microelectron. J., 37 (5) (2006), pp. 433-451

J. Nakamura (Ed.), Image Sensors and Signal Processing for Digital Still Cameras, CRC press (2017)

K. Shimonomura Tactile image sensors employing camera: a review Sensors, 19 (18) (2019), p. 3933

J. Newman, H. Zhou, H. Hu

Inertial sensors for motion detection of human upper limbs

Sens. Rev. (2007)

M. Amjadi, K.U. Kyung, I. Park, M. Sitti

Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review Adv. Funct. Mater., 26 (11) (2016), pp. 1678-1698

T. Yan, Z. Wang, Z.J. Pan Flexible strain sensors fabricated using carbon-based nanomaterials: a review Curr. Opin. Solid State Mater. Sci., 22 (6) (2018), pp. 213-228

A. Baca, P. Dabnichki, M. Heller, P. KornfeindUbiquitous computing in sports: a review and analysisJ. Sports Sci., 27 (12) (2009), pp. 1335-1346

K. Taraldsen, S.F. Chastin, I.I. Riphagen, B. Vereijken, J.L. Helbostad Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications Maturitas, 71 (1) (2012), pp. 13-19

M. Dadafshar Accelerometer and Gyroscopes Sensors: Operation, Sensing, and Applications (2014) Maxim Integrated [online]

A. Sabato, C. Niezrecki, G. Fortino Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: a review IEEE Sensor. J., 17 (2) (2016), pp. 226-235

I.A. Faisal, T.W. Purboyo, A.S.R. Ansori A review of accelerometer sensor and gyroscope sensor in IMU sensors on motion capture J. Eng. Appl. Sci., 15 (3) (2020), pp. 826-829

S. Sattar, S. Li, M. Chapman Road surface monitoring using smartphone sensors: a review Sensors, 18 (11) (2018), p. 3845

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, C.E. Campanella Gyroscope technology and applications: a review in the industrial perspective Sensors, 17 (10) (2017), p. 2284

W.Y. Wong, M.S. Wong, K.H. Lo

Clinical applications of sensors for human posture and movement analysis: a review Prosthet. Orthot. Int., 31 (1) (2007), pp. 62-75

Z. Chen, C. Lu Humidity sensors: a review of materials and mechanisms Sens. Lett., 3 (4) (2005), pp. 274-295

N. Yamazoe, Y. Shimizu Humidity sensors: principles and applications Sensor. Actuator., 10 (3–4) (1986), pp. 379-398

Z.M. Rittersma Recent achievements in miniaturised humidity sensors—a review of transduction techniques Sensor Actuator Phys., 96 (2–3) (2002), pp. 196-210

S.A. Imam, A. Choudhary, V.K. Sachan

Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: a review 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), IEEE (2015, October), pp. 181-187

A. Kapic, A. Tsirou, P.G. Verdini, S. Carrara

Humidity sensors for high energy physics applications: a review

IEEE Sensor. J., 20 (18) (2020), pp. 10335-10344

J.L. Santos, F. Farahi (Eds.), Handbook of Optical Sensors, CRC Press (2014)

Published

2024-06-08

How to Cite

Rabi Noori Hammude. (2024). Physics Doctor Sensor. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 2(4), 29–41. https://doi.org/10.61132/jupiter.v2i4.361

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.