Implementasi Algoritma Convolutional Neural Network untuk Meningkatkan Identifikasi Penyakit Tanaman Durian
DOI:
https://doi.org/10.61132/jupiter.v2i4.418Keywords:
Convolutional Neural Network, Disease Identification, Durian Plants, Data Augmentation, AgricultureAbstract
Detecting diseases in durian plants is a significant challenge in the agricultural sector, impacting yield and quality. This research aims to improve disease identification in durian plants by applying the Convolutional Neural Network (CNN) algorithm. The method involves collecting images of durian leaves, stems, and fruits infected by various diseases and using data augmentation techniques to expand the dataset and reduce overfitting. With the CNN model trained using this dataset, the accuracy reached 62% on validation data, with the highest accuracy for the “Healthy” class at 83%. The research results show that CNN is effective in recognizing diseases in durian plants, although there is still room for improvement through model optimization and the addition of training data. The implications of this research include the development of an AI-based disease detection system that can help farmers care for durian plants more efficiently and timely.
References
Achmad, Y., Wihandika, R. C., & Dewi, C. (2019). Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(11).
Adenia, R., Minarno, A. E., & Azhar, Y. (2022). Implementasi Convolutional Neural Network Untuk Ekstraksi Fitur Citra Daun Dalam Kasus Deteksi Penyakit Pada Tanaman Mangga Menggunakan Random Forest. REPOSITOR, 4(4).
Azmi, K., Defit, S., & Sumijan, S. (2023). Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat. JURNAL UNITEK, 16(1). https://doi.org/10.52072/unitek.v16i1.504
Chandra, L. J. (2022). Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Indentifikasi Jenis Bunga Berbasis Mobile Menggunakan Framework TensorFlow Lite. E-Journal Universitas Atma Jaya Yogyakarta.
Lonang, S., Yudhana, A., & Biddinika, M. K. (2023). Analisis Komparatif Kinerja Algoritma Machine Learning untuk Deteksi Stunting. Jurnal Media Informatika Budidarma, 7.
Maulana, I., Khairunisa, N., & Mufidah, R. (2024). DETEKSI BENTUK WAJAH MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN). JATI (Jurnal Mahasiswa Teknik Informatika), 7(6). https://doi.org/10.36040/jati.v7i6.8171
Maulana, R. R. M. A. R., Rizal, F., & Shudiq, W. J. (2023). Implementasi Algoritma Convolutional Neural Network (Cnn) Untuk Deteksi Kesegaran Telur Berbasis Android. Jusikom: Jurnal Sistem Komputer Musirawas, 8(1).
Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). Recent advances in image processing techniques for automated leaf pest and disease recognition – A review. In Information Processing in Agriculture (Vol. 8, Issue 1). https://doi.org/10.1016/j.inpa.2020.04.004
Putra, J. V. P., Ayu, F., & Julianto, B. (2023). Implementasi Pendeteksi Penyakit pada Daun Alpukat Menggunakan Metode CNN. Stains (Seminar Nasional Teknologi & Sains), 2(1).
Putra, N. S., Hutabarat, B. F., & Khaira, U. (2023). Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Jenis Kelamin Dan Ras. Decode: Jurnal Pendidikan Teknologi Informasi, 3(1). https://doi.org/10.51454/decode.v3i1.123
Saputra, R. A., Wasiyanti, S., Supriyatna, A., & Saefudin, D. F. (2021). Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi. Swabumi, 9(2). https://doi.org/10.31294/swabumi.v9i2.11678
Trisiawan, I. K., & Yuliza, Y. (2022). Penerapan Multi-Label Image Classification Menggunakan Metode Convolutional Neural Network (CNN) Untuk Sortir Botol Minuman. Jurnal Teknologi Elektro, 13(1). https://doi.org/10.22441/jte.2022.v13i1.009
Yuda, A. K. S., & Ahmad, S. (2023). Implementasi Prediksi Tanaman Herbal Menggunakan Algoritma Convolutional Neural Network Berbasis Android. Reputasi: Jurnal Rekayasa Perangkat Lunak, 4(2). https://doi.org/10.31294/reputasi.v4i2.2403
Yunius, Y. R. (2018). Implementasi Algoritma Convolutional Neural Network Dengan Framework Tensorflow Pada Aplikasi Mobile Pendeteksi Penyakit Melanoma Dengan Memanfaatkan Webservice Framework Flask. Journal of Materials Processing Technology, 1(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.