Jaringan Syaraf Tiruan Memprediksi Jumlah Kebutuhan Semen pada Toko Bangunan Bintang Makmur Menggunakan Metode Backpropagation

Authors

  • Dhovan Damara Santoso STMIK Kaputama Binjai
  • Relita Buaton STMIK Kaputama Binjai
  • Mili Alfhi Syari STMIK Kaputama Binjai

DOI:

https://doi.org/10.61132/jupiter.v2i5.559

Keywords:

Artificial Neural Networks, Cement, MATLAB, Backpropagation

Abstract

Every company is required to plan the need for goods as effectively as possible in order to maximize profits. Bintang Makmur Building Shop is a building shop that provides building materials, especially cement. Cement is one of the basic materials for buildings. The need for cement has recently continued to increase due to the large number of developments, both housing projects and road construction. In addition to the increasing demand for cement, cement prices also experienced price volatility which tended to fluctuate. This is done so that there is no stockpiling or even a shortage of cement. With prices that tend to go up and down if there is too much stock, it will cause losses if there is a price decrease. Vice versa if there is a shortage of cement stock, it can cause disappointment to customers. To deal with the above, it is necessary to build a prediction system that can predict cement needs in prosperous shops. The system that will be built uses an Artificial Neural Network (Artificial Neural Network) which is part of the science of artificial intelligence which has been widely used to solve various kinds of problems related to prediction or forecasting by utilizing the Backpropagation Method. The system is designed with the MATLAB programming application. From the results of the research that has been carried out, it was found that the total demand for Andalas cement for January of the following year is 0.2532 or 2532, thus the predicted total demand for Andalas cement is 2532 sacks.

References

Damanik, E. H., Irawan, E., & Rizki, F. (2021). Jaringan syaraf tiruan untuk memprediksi nilai siswa SMA menggunakan backpropagation. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 4*(2), 1–7. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v4i2.1500

Evriyantino, Y., & Setiawan, B. (2019). Prediksi permintaan semen dengan metode fuzzy time series. Teknologi Informasi dan Ilmu Komputer, 3*(9).

Hasanati, Z., & Meidelfi, D. (2020). Kajian implementasi jaringan syaraf tiruan metode backpropagation untuk deteksi bau. Jurnal Aplikasi Komputer dan Teknologi, 1*(2). https://doi.org/10.52158/jacost.v1i2.113

Juliafad, E., Ardila, W., Putra, R. R., & Rani, I. G. (2022). Faktor pengali kuat tekan aktual terhadap prediksi kuat tekan hasil hammer test. CIVED, 9(3). https://doi.org/10.24036/cived.v9i3.119916

Ramli, Nurhayati, & Saragih, R. (2021). Jaringan syaraf tiruan memprediksi kebutuhan alat suntik medis di rumah sakit menggunakan backpropagation (Studi Kasus: RSU Bathesda). JIKSTRA, 3(1).

Riansah, R. M., Sembiring, R. W., & Masruro, Z. (2019). Jaringan syaraf tiruan dalam memprediksi jumlah pelanggan PT. Telkom Akses Area Sumbagut menggunakan metode backpropagation. Prosiding Seminar Nasional Riset Informasi, 1. https://doi.org/10.30645/senaris.v1i0.87

Rohayani, H., Wibowo, F., & Anwar, M. (2022). Prediksi penentuan program studi berdasarkan nilai siswa dengan metode backpropagation. Jurnal Sistem Informasi dan Riset, 3*(4), 122–132.

Satria, B. (2018). Prediksi volume penggunaan air PDAM menggunakan metode jaringan syaraf tiruan backpropagation. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2*(3). https://doi.org/10.29207/resti.v2i3.575

Sianipar, M. P., Sumarno, & Tambunan, H. S. (2021). Implementasi jaringan syaraf tiruan backpropagation untuk memprediksi jumlah pemasangan instalasi air pada PDAM Tirtauli Pematangsiantar. TIN Terapis Informatika Nusantara, 1*(9), Februari 2021.

Siregar, A. C., & Octariadi, B. C. (2021). Perbandingan metode jaringan syaraf tiruan pada klasifikasi motif kain tenun Sambas. CYBERNETICS, 4(02). https://doi.org/10.29406/cbn.v4i02.2489

Sonang, S., Purba, A. T., & Sirait, S. (2022). Prediksi prestasi mahasiswa dengan menggunakan algoritma backpropagation. Jurnal Teknik Informatika dan Komputer, 5*(1), 67–77. https://doi.org/10.37600/tekinkom.v5i1.512

Yuniati, F. (2021). Aplikasi jaringan syaraf tiruan untuk memprediksi prestasi siswa SMU dengan metode backpropagation. Universitas Islam Negeri Sunan Kalijaga, 6*(1), 1–9.

Published

2024-09-14

How to Cite

Dhovan Damara Santoso, Relita Buaton, & Mili Alfhi Syari. (2024). Jaringan Syaraf Tiruan Memprediksi Jumlah Kebutuhan Semen pada Toko Bangunan Bintang Makmur Menggunakan Metode Backpropagation. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 2(5), 197–213. https://doi.org/10.61132/jupiter.v2i5.559

Similar Articles

You may also start an advanced similarity search for this article.