Pengaruh Jarak dan Kecerahan terhadap Waktu Respons Alat Simulasi Sistem Keamanan Kendaraan Berbasis Pengenalan Wajah

Authors

  • Shafiyullah Aldiyanki Politeknik Negeri Malang
  • Santoso Santoso Politeknik Negeri Malang

DOI:

https://doi.org/10.61132/venus.v3i4.1031

Keywords:

Biometric Authentication, Facial Recognition, IoT, Response Time, Vehicle Security Systems

Abstract

The rise in motor vehicle theft cases in various regions indicates the weakness of the security systems implemented by most users. Systems such as manual locks and alarms often fail to prevent crime, either because they are easily hacked conventionally or due to user negligence in their operation. In today's technological era, a system is needed that is not only secure, but also intelligent and practical. One promising solution is the implementation of a facial recognition-based security system. This study aims to design and test a vehicle security simulation system using facial recognition technology integrated with Arduino Uno and MATLAB. This system utilizes a laptop camera to capture the user's facial image, then performs a detection and verification process using the FaceNet algorithm. If the face is recognized and verified with data stored in the database, the Arduino will activate the actuator components in the form of a DC motor to simulate starting the engine, and a servo motor to simulate opening the vehicle door. This study uses a quantitative experimental approach to analyze the effect of variations in distance (30, 40, and 50 cm) and lighting brightness levels (10–20, 21–30, and 31–40 lux) on the system's response time. A total of 27 combinations of conditions were tested, and the data obtained were analyzed using Microsoft Excel and ANOVA tests in Minitab software. The results of the analysis showed that the optimal response time was obtained at a distance of 40 cm with a medium level of illumination (21–30 lux). In addition, both distance, brightness, and the interaction between the two factors were shown to have a significant effect on the system's response time (P-Value < 0.05). These findings indicate that the system is quite sensitive to environmental changes, so further testing is highly recommended, especially to measure the actual delay, the detection error rate, and the development of a more robust face detection algorithm so that the system can be used reliably in various lighting conditions and face capture angles in the real world.

References

Abidin, S., & Syahrir. (2018). Deteksi wajah menggunakan metode Haar Cascade Classifier berbasis webcam pada MATLAB. Jurnal Teknologi Elekterika, 15(1), 21–28. https://doi.org/10.31963/elekterika.v2i1.2102

Alam, S., & Jayadi, M. J. (2021). Sistem aplikasi lokasi keamanan kendaraan menggunakan GPS (Global Position System) berbasis web. Jurnal Sintaks Logika (JSilog), 1(3), 197–203. https://doi.org/10.31850/jsilog.v1i3.1040

Arif, D. T., & Aswardi, M. (2020). Kendali kecepatan motor DC penguat terpisah berbeban berbasis Arduino. Jurnal Teknik Elektro dan Vokasional (JTEV), 6(2), 33–43. https://doi.org/10.24036/jtev.v6i2.108395

Aryatama, F. A., & Samsugi, S. (2023). Sistem keamanan kendaraan bermotor dengan ESP32 menggunakan kontrol Android. SMATIKA: STIKI Informatika Jurnal, 14(1), 167–181. https://doi.org/10.32664/smatika.v14i01.1267

D. Neje, S., Patil, P. G., Gele, D. D., Ubale, M., & Chougule, S. R. (2024). Smart car security system using face recognition. International Journal of Innovative Science and Research Technology (IJISRT), 9(7), 1640–1644. https://doi.org/10.38124/ijisrt/ijisrt24jul1056

Dirgantara, M. R., Syahputri, S., Hasibuan, A., & Nurbaiti. (2023). Pengenalan database management system (DBMS). Jurnal Ilmiah Multidisipline, 1(6), 300–306. https://doi.org/10.5281/zenodo.8123019

Hafidly, A. P., & Azfajri, G. (2022). Sistem keamanan sepeda motor berbasis face recognition. Proyek Akhir, Program Studi Teknik Elektronika, Jurusan Teknik Elektro dan Informatika, Politeknik Manufaktur Negeri Bangka Belitung.

Hermawan, R., & Abdurrohman. (2020). Pemanfaatan teknologi Internet of Things pada alarm sepeda motor menggunakan NodeMCU LoLiN V3 dan media Telegram. Infotronik: Jurnal Teknologi Informasi dan Elektronika, 5(2), 58–67. https://doi.org/10.32897/infotronik.2020.5.2.453

Kamal, K., Tyas, U. M., Buckhari, A. A., & Pattasang, P. (2023). Implementasi aplikasi Arduino IDE pada mata kuliah sistem digital. Jurnal Pendidikan dan Teknologi (TEKNOS), 1(1), 1–10.

Khoiri, M. I., Prayudha, J., & Andika, B. (2022). Implementasi IoT (Internet of Things) keamanan sepeda motor berbasis NodeMCU. Jurnal Sistem Komputer Triguna Dharma (JURSIK TGD), 1(5), 197–204. https://doi.org/10.53513/jursik.v1i5.6427

Krishnan, A., N, D., Nair, R. R., & S, J. V. J. (2018). Auto switching car door-lock system based on facial recognition using MATLAB. International Journal of Advance Research, Ideas and Innovations in Technology (IJARIIT), 4(2), 2645–2650.

Marzuki, A. A., Martawati, M. E., & Susanto, R. E. W. (2023). Sistem pengaman kendaraan listrik dengan deteksi wajah berbasis Internet of Things (IoT). Journal of Mechanical Engineering (J-MEEG), 2(2), 206–213.

Mira, E., Hadi, S., Fachrudin, A. R., Susilo, S. H., & Perkasa, R. E. (2021). Vehicle safety system with Arduino-based face detection technique. Attractive: Innovative Education Journal, 3(3), 196–202. https://attractivejournal.com/index.php/aj/article/download/282/190

Muttaqin, I. R., & Santoso, D. B. (2021). Prototype pagar otomatis berbasis Arduino Uno dengan sensor ultrasonic HC-SR04. JE-UNISLA, 6(2), 41–45. https://doi.org/10.30736/je-unisla.v6i2.695

Nasution, I. P., Ahmad, U. A., & Tresna, W. P. (2023). Karakterisasi putaran motor servo jangkauan setengah bola untuk mendukung pelontar peluru berbasis pneumatic. E-Proceeding of Engineering, 10(1), 445–451.

Rosita, Y. D., & Sugianto. (2018). Pemanfaatan MATLAB (Matrix Laboratory) untuk deteksi jalan aspal berlubang. https://qiaramedia.com/publications/370826/pemanfaatan-matlab-matrix-laboratory-untuk-deteksi-jalan-aspal-berlubang

Santoso, S. P., & Wijayanto, F. (2022). Rancang bangun akses pintu dengan sensor suhu dan handsanitizer otomatis berbasis Arduino. Jurnal Elektro, 10(1), 20–31.

Saputra, H. A., Utaminingrum, F., & Kurniawan, W. (2019). Deteksi dan pengenalan wajah sebagai pendukung keamanan menggunakan algoritme Haar-Classifier dan Eigenface berbasis Raspberry Pi. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(2), 1372–1380. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4375

Sari, L. V., Musthafa, A., & Harmini, T. (2022). Pengenalan ekspresi wajah secara realtime menggunakan transfer learning pada FaceNet. Seminar Nasional Hasil Penelitian & Pengabdian Masyarakat Bidang Ilmu Komputer, 1–7.

Shitole, T., & Behera, A. K. (2024). Design, analysis and optimization of car door. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 12(1), 577–584. https://doi.org/10.22214/ijraset.2024.54148

Sinaga, G. E. L., Gunawan, I., Irawan, & Poningsih. (2022). Rancang bangun sistem keamanan sepeda motor berbasis Arduino Uno menggunakan GPS dan relay melalui smartphone. STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 1(1), 1–7. https://doi.org/10.55123/storage.v1i1.154

Tsauri, S., & Efendi, Y. (2019). Perancangan alat keamanan kendaraan menggunakan Arduino berbasis mobile. JI-Tech, 15(2), 29–39.

Utama, A. G., Nabila, A. S., Azzahra, A. K., Fadlun, D., & Assaidah. (2023). Pembuatan graphical user interface (GUI) MATLAB untuk demonstrasi metode windowing pada low pass filter (LPF) finite impulse response (FIR). Jurnal Penelitian Sains (JPS), 25(1), 34–40. https://doi.org/10.56064/jps.v25i1.749

Downloads

Published

2025-08-14

How to Cite

Shafiyullah Aldiyanki, & Santoso Santoso. (2025). Pengaruh Jarak dan Kecerahan terhadap Waktu Respons Alat Simulasi Sistem Keamanan Kendaraan Berbasis Pengenalan Wajah. Venus: Jurnal Publikasi Rumpun Ilmu Teknik , 3(4), 113–123. https://doi.org/10.61132/venus.v3i4.1031

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.