Peran Gradasi dan Mineralogi dalam Menentukan Kekuatan dan Kompresibilitas Material Disposal Tambang Nikel
Kajian Literatur
DOI:
https://doi.org/10.61132/venus.v3i6.1209Keywords:
Compressibility, Disposal, Gradation, Mine, MineralogyAbstract
Mine disposal materials such as tailings, overburden, and waste rocks are critical components in mining operations that require comprehensive understanding of their geotechnical properties to ensure stability and safety of storage facilities. This literature review aims to analyze the role of particle gradation and mineralogical composition in determining shear strength and compressibility of mine disposal materials, with particular focus on nickel mining. A sistematic literature review method was employed by analyzing 30 scientific publications from 2019-2025 obtained from various academic databases. The review findings indicate that particle size distribution (gradation) has significant influence on shear strength and compressibility, where materials with coarser gradation and higher coefficient of uniformity (Cu) exhibit greater shear strength and lower compressibility. Mineralogy, particularly clay mineral content, increases cohesion and microporosity but also increases compressibility under loose conditions. Studies on nickel mine waste demonstrate that ferronickel slag possesses favorable drainage characteristics suitable for rockfill material, while tailings require strict gradation control. In conclusion, comprehensive characterization integrating gradation parameters (Cu, Cc, D50) with mineralogical analysis (XRD, XRF) is essential for predicting mechanical behavior of mine disposal materials and designing safe storage facilities.
References
Chai, X., Sheng, Y., Liu, J., Xu, Y., & Liu, H. (2022). Experimental study on the mechanical properties of saturated tailing sand with different particle sizes. Applied Sciences, 12(23), 12231. https://doi.org/10.3390/app122312231
Consoli, N. C., Silva, J. P. S., Wagner, A. C., Carvalho, J. V. de A., Baudet, B. A., Coop, M. R., Scheuermann Filho, H. C., Carvalho, I., de Sousa, G. M., & Cacciari, P. P. (2024). Critical state analysis of two compacted filtered iron ore tailings with different gradings and mineralogy at different stages of treatment. Acta Geotechnica, 19(2), 881–898. https://doi.org/10.1007/s11440-023-01963-9
Costa, J. P. R., Gomes, G. J. C., Fernandes, G., Magarinos, D. M., Fonseca, A., & Pires, P. J. M. (2023). Ferronickel slag as free-draining rockfill dike material: A novel waste solution for mining regions. Journal of Material Cycles and Waste Management, 25(1), 128–143. https://doi.org/10.1007/s10163-022-01519-1
Das, B. M. (2015). Principles of foundation engineering (8th ed.). Cengage Learning.
Edraki, M., Baumgartl, T., Manlapig, E., Bradshaw, D., Franks, D. M., & Moran, C. J. (2014). Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. Journal of Cleaner Production, 84, 411–420. https://doi.org/10.1016/j.jclepro.2014.04.079
Fourie, A., & Edraki, M. (2022). Geotechnics of mine tailings: A 2022 state of the art. In Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering.
Guner, N. U., Yilmaz, E., Sari, M., & Kasap, T. (2023). Cementitious backfill with partial replacement of Cu-rich mine tailings by sand: Rheological, mechanical and microstructural properties. Minerals, 13(3), 437. https://doi.org/10.3390/min13030437
Guo, Y., Zhang, J., Li, M., Timms, W., Shen, L., & Li, P. (2022). Effects of loading stress and velocity on compression and particle breakage behaviour of waste rocks in backfill coal mining. Applied Sciences, 12(21), 11175. https://doi.org/10.3390/app122111175
Jing, X., Wu, S., Qin, J., Li, X., Liu, X., Zhang, Y., Mao, J., & Nie, W. (2023). Multiscale mechanical characterizations of ultrafine tailings mixed with incineration slag. Frontiers in Earth Science, 11, Article 1123529. https://doi.org/10.3389/feart.2023.1123529
Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering (Technical Report EBSE-2007-01). Keele University & University of Durham.
Li, S., Liang, H., Li, H., Ma, J., & Li, B. (2021). Minimum void ratio model established from tailings and determination of optimal void ratio. Geofluids, 2021, 1–15. https://doi.org/10.1155/2021/8619121
Ma, C., Li, R., Zhang, C., Guo, X., & Li, X. (2023). A study on compressibility and permeability of tailings with different particle sizes under high pressure. Bulletin of Engineering Geology and the Environment, 82(4), Article 106. https://doi.org/10.1007/s10064-023-03117-3
Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (3rd ed.). John Wiley & Sons.
Reid, D., Fourie, A., Ayala, J. L., Dickinson, S., Ochoa-Cornejo, F., Fanni, R., Garfias, J., da Fonseca, A. V., Ghafghazi, M., Ovalle, C., Riemer, M., Rismanchian, A., Olivera, R., & Suazo, G. (2021). Results of a critical state line testing round robin programme. Géotechnique, 71(7), 616–630. https://doi.org/10.1680/jgeot.19.P.373
Riveros, G. A., & Sadrekarimi, A. (2021). Static liquefaction behaviour of gold mine tailings. Canadian Geotechnical Journal, 58(6), 889–901. https://doi.org/10.1139/cgj-2020-0209
Santamarina, J. C., Torres-Cruz, L. A., & Bachus, R. C. (2019). Why coal ash and tailings dam disasters occur. Science, 364(6440), 526–528. https://doi.org/10.1126/science.aax1927
Zhang, C., Pan, Z., Yin, H., Ma, C., Ma, L., & Li, X. (2022). Influence of clay mineral content on mechanical properties and microfabric of tailings. Scientific Reports, 12(1), Article 10700. https://doi.org/10.1038/s41598-022-15063-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Venus: Jurnal Publikasi Rumpun Ilmu Teknik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



