Optimalisasi Deformasi Canai Dingin untuk Meningkatkan Sifat Mekanik Paduan Al-Mg-Si

Authors

  • Venty Lestari Universitas Sriwijaya

DOI:

https://doi.org/10.61132/venus.v3i5.1216

Keywords:

Al-Mg-Si, Cold Rolling, Hardness, Microstructure, Plastic Deformation

Abstract

The demand for lightweight materials with high mechanical strength has driven the development of aluminum alloys, particularly Al-Mg-Si, through deformation processes such as cold rolling. This study aims to analyze the effect of varying degrees of cold rolling deformation on the grain aspect ratio and macrohardness of homogenized Al-Mg-Si alloys. Deformation was applied at three thickness reduction levels—5%, 10%, and 20%—followed by microstructural characterization using optical microscopy and macrohardness testing in accordance with ASTM E-18 standards. The results show that increasing deformation levels lead to elongated grain morphology, with the grain aspect ratio rising from 1.16 to 2.07 and macrohardness increasing from 46.64 HRE to 62 HRE. The emergence of slip lines and grain flattening indicates the occurrence of intense plastic deformation, while work hardening results from dislocation accumulation that impedes further slip motion. These findings confirm a strong correlation between microstructural evolution and mechanical property enhancement in cold-deformed Al-Mg-Si alloys. This research contributes to the optimization of cold rolling parameters to produce engineering materials with a desirable balance of strength, formability, and fatigue resistance for applications in the mining and heavy manufacturing industries.

References

Alhamidi, A., & Dewi, M. (2018). Microstructural and mechanical properties AA6061 processed by cold rolling and aging. VANOS Journal of Mechanical Engineering Education, 3(1), 59–68. https://doi.org/10.30870/vanos.v3i1.3686

Bay, B., Hansen, N., & Kuhlmann-Wilsdorf, D. (1992). Microstructural evolution in rolled aluminium. Materials Science and Engineering: A, 158(2), 139–146. https://doi.org/10.1016/0921-5093(92)90002-I

Callister, W. D., & Rethwisch, D. G. (2010). Materials science and engineering (8th ed.). John Wiley & Sons.

Dieter, G. E. (1987). Metalurgi mekanik (S. Djaprie, Trans.). Erlangga.

Hosford, W. F., & Caddell, R. M. (2011). Metal forming: Mechanics and metallurgy (4th ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511976940

Humphreys, F. J., & Hatherly, M. (2004). Recrystallization and related annealing phenomena (2nd ed.). Elsevier. https://doi.org/10.1016/B978-008044164-1/50016-5

Karhausen, K. F., & Korhonen, A. S. (2018). Rolling of aluminum. In Handbook of aluminum (Vol. 2). Taylor & Francis. https://doi.org/10.1201/9781351045636-140000436

Kaufman, J. G., & Rooy, E. L. (2004). Aluminum alloy castings: Properties, processes, and applications. ASM International. https://doi.org/10.31399/asm.tb.aacppa.9781627083355

Kurnia, R. (2016). Studi pengaruh canai dingin dan temperatur anil terhadap rekristalisasi serta sifat mekanik paduan Al-4.7Zn-1.8Mg (% berat) hasil squeeze casting (Skripsi). Universitas Indonesia.

Li, H. L., Yuan, X. G., Wu, M. F., & Huang, H. J. (2011). Effect of rolling process on the microstructure of AlMgSi alloy. Advanced Materials Research, 399–401, 40–45. https://doi.org/10.4028/www.scientific.net/AMR.399-401.40

Radetić, T., Popović, M., Alić, A., Markoli, B., Naglič, I., & Romhanji, E. (2022). Effect of homogenization temperature on microstructure and mechanical properties of Al–Mg–Si alloy containing low-melting point elements. Journal of Alloys and Compounds, 902, 163719. https://doi.org/10.1016/j.jallcom.2022.163719

Ray, S. (2016). Principles and applications of metal rolling. Cambridge University Press. https://doi.org/10.1017/CBO9781139879293

Samodurova, M. N., Karandaeva, O. I., & Khramshin, V. R. (2020). Calculating power parameters of rolling mill based on model of deformation zone with four-roll passes. Machines, 8(4), 73. https://doi.org/10.3390/machines8040073

Singh, P., & Nath, Y. (2008). An efficient thermal analysis for the prediction of minimum film thickness in inlet zone at high speed lubricated cold strip rolling. Journal of Materials Processing Technology, 205(1–3), 238–249. https://doi.org/10.1016/j.jmatprotec.2007.09.010

Sofyan, B. T. (2021). Pengantar material teknik (2nd ed.). UNHAN RI Press.

Totten, G. E., & MacKenzie, D. S. (2003). Handbook of aluminum: Volume 1—Physical metallurgy and processes. CRC Press. https://doi.org/10.1201/9780203912591

Zhou, D., Du, W., Wen, X., Qiao, J., Wei, L., & Yang, F. (2018). Local deformation and texture of cold rolled AA6061 aluminium alloy. Materials, 11(10), 1866. https://doi.org/10.3390/ma11101866

Downloads

Published

2025-10-30

How to Cite

Venty Lestari. (2025). Optimalisasi Deformasi Canai Dingin untuk Meningkatkan Sifat Mekanik Paduan Al-Mg-Si . Venus: Jurnal Publikasi Rumpun Ilmu Teknik , 3(5), 252–268. https://doi.org/10.61132/venus.v3i5.1216

Similar Articles

You may also start an advanced similarity search for this article.