Rancang Bangun Sistem Monitoring Kinerja Fresh Water Generator Menggunakan Arduino Mega 2560
DOI:
https://doi.org/10.61132/venus.v2i3.326Keywords:
Water, Fresh Water generator, Arduino mega 2560, Sensor, Lora Ra-02Abstract
Fresh water is a basic need of the ship's crew in supporting the creation of smooth ship operating activities, therefore it is also necessary to have an auxiliary aircraft that can produce its own fresh water on board to reduce ship operating costs, which is called the Fresh Water Generator (FWG). FWG is an auxiliary aircraft that can convert seawater into fresh water by evaporation and condensation processes. Therefore, it is necessary to have a tool to monitor the performance of the fresh water generator. The purpose of this research is none other than to monitor temperature conditions, water TDS, and conditions on the input and output streams of the fresh water generator evaporator filter to be more optimal and efficient and to determine the reliability of the fresh water generator performance equipment system using a long distance in order to create better and higher quality fresh water production on board. This research uses a prototyping method system. After designing and testing the tool monitoring system for the performance of fresh water generators using Arduino mega 2560 based on LoRa Ra-02, this system is one of the new technologies that can monitor the performance of fresh water generators to be more efficient and reliable. Then the readings of all sensors can work properly with an average percentage error on the Max 6675 temperature sensor of 0.58%, pressure transmiter sensor 1 of 2.04%, pressure transmiter sensor 2 of 2.04%, and TDS sensor of 1,70% and the distance to communication between the receiver and transceiver reaches a range of 200 meters without obstacles and 97 meters through obstacles around.
References
Ajar Rohmanu, A. (2018). Sistem sensor jarak aman pada mobil berbasis mikrokontroller Arduino Atmega328. Jurnal STMIK Cikarang, 3(1), 9.
Amrullah, R. A., & Utami, E. P. (2022). Pencegahan terjadinya selisih jumlah muatan bahan bakar pada saat bunker Kapal Republik Indonesia (KRI) di PT. Pertamina Trans Kontinental Surabaya. In Prosiding Seminar Nasional Inovasi Pendidikan Maritim (pp. 199-214).
Anantama, A., Apriyantina, A., Samsugi, S., & Rossi, F. (2020). Alat pantau jumlah pemakaian daya listrik pada alat. Journal Name, 1(1), 29–34.
Asshidqi, A. F. (2023). Rancang bangun komunikasi antar LoRa node. Fakultas Teknologi dan Informatika, Universitas Dinamika.
Bersih, A. (2021). Sistem monitoring keadaan air berbasis Internet of Things (IoT). Journal Name, 8(2), 1029–1038.
Kusumah, H., Pradana, R. A., Studi, P., Komputer, S., & Raharja, U. (2019). Penerapan trainer interfacing mikrokontroler dan Internet of Things berbasis ESP32 pada mata kuliah. Journal Name, 5(2), 120–134.
Prasetyo, T. (2017). Analisis menurunnya produksi air tawar dari fresh water generator di MT. Spas Tiga (Diploma thesis, Politeknik Ilmu Pelayaran Semarang).
Rahardjo, P. (2022). Sistem penyiraman otomatis menggunakan sensor kelembaban tanah berbasis mikrokontroler Arduino Mega 2560 pada tanaman mangga harum manis Buleleng Bali. Journal Name, 21(1), 31–34.
Ramady, G. D., Yusuf, H., Hidayat, R., Mahardika, A. G., & Lestari, N. S. (2020). Rancang bangun model simulasi sistem pendeteksi dan pembuangan asap rokok otomatis berbasis Arduino. Jurnal Teknologi Informasi, 6(2), 212–218. https://doi.org/10.31294/jtk.v4i2
Septiana, R., Roihan, I., & Karnadi, J. (2019). Calibration of K-type thermocouple and MAX6675 module with reference DS18B20 thermistor based on Arduino DAQ. Journal Name, 9–10.
Sukmadinata, N. S. (2011). Landasan psikologi proses pendidikan. Bandung: Remaja Rosdakarya.
Syahwil, M. (2013). Panduan mudah simulasi dan praktek mikrokontroler Arduino.
Yulistiani, T. (2023). Alat pembatas arus adjustable limiter berbasis mikrokontroler (Sarjana thesis, Universitas Siliwangi).
Zamora, R., Harmadi, H., & Wildian, W. (2016). Perancangan alat ukur TDS (Total Dissolved Solid) air dengan sensor konduktivitas secara real-time. Sainstek: Jurnal Sains dan Teknologi, 7(1), 11-15.
Zulkarnaen, D., Budiman, F., & Prihatiningrum, N. (2021). Sistem monitoring keadaan air berbasis Internet of Things (IoT). E-Proceeding of Engineering, 8(2), 1029–1038.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Venus: Jurnal Publikasi Rumpun Ilmu Teknik
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.