Penerapan Model Arima Untuk Peramalan Jumlah Orang yang Melakukan Pembayaran Pajak Reklame Dispenda

Authors

  • Rima Aprilia Universitas Islam Negeri Sumatera Utara
  • Aulia Rahman Siregar Universitas Islam Negeri Sumatera Utara
  • Nurmala Sari Siregar Universitas Islam Negeri Sumatera Utara
  • Irfan Suhendra Universitas Islam Negeri Sumatera Utara
  • Fariz Hakim Fernanda Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.61132/inber.v3i1.760

Keywords:

Billboard Tax, ARIMA Model, Local Revenue of Medan City

Abstract

The forecasting of advertisement tax payments at the Medan City Revenue Agency aims to support planning and decision-making regarding advertisement tax revenue from 2021 to 2023, covering the period from January to December. In this process, historical data on advertisement tax payments is analyzed to determine the most suitable ARIMA model by considering the Autoregressive (AR), Differencing (I), and Moving Average (MA) parameters. The research indicates that the ARIMA model can provide accurate predictions of advertisement tax payment trends, thereby serving as a tool to enhance the effectiveness of local tax management. For the period from January to October 2024, it is estimated that 1,141 individuals will make advertisement tax payments, with the lowest forecasted number occurring in January 2024 at 1,128 individuals.

References

Astutik. (2012). Analisis pengaruh pemahaman wajib pajak terhadap Undang-Undang Perpajakan dengan tingkat kepatuhan wajib pajak. Jakarta: Ghalia.

Khairati, W. (2020). Laporan akhir kerja lapangan: Pengelolaan data arsip kantor BPJS Ketenagakerjaan Cabang Tanjung Morawa. Tanjung Morawa.

Ningsih, S. (2017). Analysis of billboard contribution tax to regional income of Sukoharjo District in year 2012-2016. International Journal of Economics, Business and Accounting Research (IJEBAR), 1(1), 57-67. Retrieved from https://jurnal.stieaas.ac.id/index.php/IJEBAR/article/view/394/243

Raihansyah, P., et al. (2024). Penerapan model ARIMA untuk memprediksi harga penutupan saham bulanan AMRT.JK. Jurnal Matematika dan Aplikasi, 13(1).

Ratnasari, U. (2022). Peramalan jumlah klaim jaminan hari tua pada BPJS Ketenagakerjaan dengan menggunakan ARIMA. Jurnal Mahasiswa Matematika ALGEBRA, 3(1), 63-75.

Rifa’i, A., & Sanjani, D. R. (2018). Laporan praktik kerja lapangan (PKL) BPJS Ketenagakerjaan Kantor Cabang Bandar Lampung. Bandar Lampung.

Sari, R., & Permana, H. (2020). Optimalisasi peramalan pajak daerah menggunakan model ARIMA dan Neural Network. Jurnal Sistem Informasi dan Manajemen, 9(2), 156-170.

Saumi, A. (2020). Penerapan model ARIMA untuk peramalan jumlah klaim program jaminan hari tua pada BPJS Ketenagakerjaan Kota Langsa. Jurnal Ilmu Matematika dan Terapan, 14(4), 491-500.

Downloads

Published

2025-01-30

How to Cite

Rima Aprilia, Aulia Rahman Siregar, Nurmala Sari Siregar, Irfan Suhendra, & Fariz Hakim Fernanda. (2025). Penerapan Model Arima Untuk Peramalan Jumlah Orang yang Melakukan Pembayaran Pajak Reklame Dispenda. Indonesia Bergerak : Jurnal Hasil Kegiatan Pengabdian Masyarakat, 3(1), 92–103. https://doi.org/10.61132/inber.v3i1.760

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.