Penerapan Model Arima Untuk Peramalan Jumlah Orang yang Melakukan Pembayaran Pajak Reklame Dispenda
DOI:
https://doi.org/10.61132/inber.v3i1.760Keywords:
Billboard Tax, ARIMA Model, Local Revenue of Medan CityAbstract
The forecasting of advertisement tax payments at the Medan City Revenue Agency aims to support planning and decision-making regarding advertisement tax revenue from 2021 to 2023, covering the period from January to December. In this process, historical data on advertisement tax payments is analyzed to determine the most suitable ARIMA model by considering the Autoregressive (AR), Differencing (I), and Moving Average (MA) parameters. The research indicates that the ARIMA model can provide accurate predictions of advertisement tax payment trends, thereby serving as a tool to enhance the effectiveness of local tax management. For the period from January to October 2024, it is estimated that 1,141 individuals will make advertisement tax payments, with the lowest forecasted number occurring in January 2024 at 1,128 individuals.
References
Astutik. (2012). Analisis pengaruh pemahaman wajib pajak terhadap Undang-Undang Perpajakan dengan tingkat kepatuhan wajib pajak. Jakarta: Ghalia.
Khairati, W. (2020). Laporan akhir kerja lapangan: Pengelolaan data arsip kantor BPJS Ketenagakerjaan Cabang Tanjung Morawa. Tanjung Morawa.
Ningsih, S. (2017). Analysis of billboard contribution tax to regional income of Sukoharjo District in year 2012-2016. International Journal of Economics, Business and Accounting Research (IJEBAR), 1(1), 57-67. Retrieved from https://jurnal.stieaas.ac.id/index.php/IJEBAR/article/view/394/243
Raihansyah, P., et al. (2024). Penerapan model ARIMA untuk memprediksi harga penutupan saham bulanan AMRT.JK. Jurnal Matematika dan Aplikasi, 13(1).
Ratnasari, U. (2022). Peramalan jumlah klaim jaminan hari tua pada BPJS Ketenagakerjaan dengan menggunakan ARIMA. Jurnal Mahasiswa Matematika ALGEBRA, 3(1), 63-75.
Rifa’i, A., & Sanjani, D. R. (2018). Laporan praktik kerja lapangan (PKL) BPJS Ketenagakerjaan Kantor Cabang Bandar Lampung. Bandar Lampung.
Sari, R., & Permana, H. (2020). Optimalisasi peramalan pajak daerah menggunakan model ARIMA dan Neural Network. Jurnal Sistem Informasi dan Manajemen, 9(2), 156-170.
Saumi, A. (2020). Penerapan model ARIMA untuk peramalan jumlah klaim program jaminan hari tua pada BPJS Ketenagakerjaan Kota Langsa. Jurnal Ilmu Matematika dan Terapan, 14(4), 491-500.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indonesia Bergerak : Jurnal Hasil Kegiatan Pengabdian Masyarakat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.