Simulasi CFD Pengeringan Maggot dengan Microwave Oven Berbasis Software Comsol Multiphysics

Authors

  • Wahid Nur Huda Universitas Tidar
  • Arif Rahman Saleh Universitas Tidar
  • Sigit Mujiarto Universitas Tidar

DOI:

https://doi.org/10.61132/jupiter.v3i5.1049

Keywords:

Animal Feed, Computational Fluid Dynamics, Final Water Content, Maggots, Microwave Drying.

Abstract

Black Soldier Fly (BSF) larvae, or maggots, are a type of insect currently widely cultivated, primarily for animal feed. This is because BSF larvae contain essential nutrients such as fat and protein in high amounts, thus improving the nutritional quality of livestock that consume them. Therefore, the processing and preservation of maggots is crucial to maintain their nutritional content and extend their shelf life. One method used in maggot processing is drying. Drying aims to reduce the water content in the larvae, thereby preventing the growth of microorganisms that cause spoilage. One widely applied technique is drying using a microwave oven. However, before the actual process is carried out, simulations are often required to determine the distribution of heat and humidity. Simulation is one of the most effective ways to predict the drying performance of biological materials. This study used a simulation using the Computational Fluid Dynamics (CFD) method operated by Comsol Multiphysics 6.2 software. The parameters used in the simulation were an initial maggot temperature of 80°C, a drying time of 15 minutes, and a heat source of 1300 W/m³. Based on the simulation results, the final water content of the maggots was below 10%. Furthermore, the final relative humidity of the maggots ranged from 10–35%, while the final temperature of the larvae increased to 93–97°C. These results indicate that microwave drying can effectively reduce moisture content while maintaining the nutritional quality of BSF larvae. These simulation results can be used as a basis for practical maggot drying processes, thus supporting the production of efficient and nutritious animal feed.

 

References

Agriculture. (2024). Drying methods for Black Soldier Fly (Hermetia illucens) larvae as a feed ingredient: Effects on nutrient digestibility. Agriculture, 14(10), Article 1792. https://doi.org/10.3390/agriculture14101792

Brodie, G. N. D. (2022). The influence of load geometry on temperature distribution during microwave heating. [Nama jurnal/prosiding belum tercantum].

Dzepe, D., Nana, P., Fotso Kuate, A., Tchuinkam, T., & Djouaka, R. F. (2019). Influence of larval density, substrate moisture content and feedstock ratio on life history traits of black soldier fly larvae. Journal of Insects as Food and Feed, 5(4), 271–281. https://doi.org/10.3920/JIFF2019.0034

Fenita, Y. (2021). Pengaruh media tumbuh yang berbeda terhadap kandungan air, protein dan lemak maggot Black Soldier Fly. Buletin Peternakan Tropis.

Fransson, J. H. M. (2020). On the effect of free-stream turbulence on boundary-layer transition. Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2020.444

Lehmad, M., El Hachimi, Y., Lhomme, P., Mghazli, S., & Abdenouri, N. (2024). Comprehensive analysis of adsorption-desorption isotherms, drying kinetics, and nutritional quality of Black Soldier Fly (Hermetia illucens) larvae. Food Biophysics, 19, 938–954. https://doi.org/10.1007/s11483-024-09867-1

Lestari, A., Wahyuni, T. H., Mirwandhono, E., & Ginting, N. (2020). Maggot Black Soldier Fly (Hermetia illucens) nutritional content using various culture media. Jurnal Pertanian Integratif, 8(3), 161–169. https://doi.org/10.32734/jpi.v8i3.12534

Novita, E., Purbasari, D., Putrianggraini, L., & Purnomo, B. H. (2023). Pengaruh variasi waktu pengukusan dan suhu pengeringan terhadap karakteristik tepung maggot Black Soldier Fly. Agrointek, 17(2), 449–457. https://doi.org/10.21107/agrointek.v17i2.13084

Ronja. (2025). Effect of drying method on selected physical and functional properties of black soldier fly larvae powders. Applied Sciences, 15(8), 4097. https://doi.org/10.3390/app15084097

Roy, A., Haque, R. A. I., Mitra, A. J., Choudhury, M. D., Tarafdar, S., & Dutta, T. (2020). Understanding flow features in drying droplets via Euler characteristic surfaces: A topological tool. Physics of Fluids, 32(12), 123107. https://doi.org/10.1063/5.0026807

Saif, M., Tariq, M., & Saif, E. M. (2017). Performance analysis of gas turbine. International Journal of Mechanical Engineering and Technology, 1, 270–280. http://www.iaeme.com/IJMET/index.asp

Sari, I. P., Sjofjan, O., & Widodo, E. (2024). Pengaruh metode pengeringan oven dan microwave terhadap kualitas fisik pakan. Jurnal Nutrisi Ternak Tropis, 7(1), 34–44. https://doi.org/10.21776/ub.jnt.2024.007.01.5

Saucier, L., et al. (2022). Drying methods of black soldier fly larvae as animal feed [PowerPoint presentation]. [Sumber: ResearchGate].

Vandeweyer, D., Lachi, D., Geheniau, H., Goovaerts, V., Van Der Zweep, P., Groffils, C., Thijs, M., & Van Der Borght, M. (2025). Dielectric drying of Black Soldier Fly larvae (Hermetia illucens): Impact on microbiological product quality, safety and stability. Journal of Insects as Food and Feed, 11(17), 21–31. https://doi.org/10.1163/23524588-00001218

Viry, F., Sturma, M., Namy, P., & Barbet, B. (2022). Optimization of the drying time of industrial solvents: Numerical modelling within COMSOL Multiphysics®. European Modeling and Simulation Symposium (EMSS), 9, 1–8. https://doi.org/10.46354/i3m.2022.emss.016

Vollmer, M. (2003). Special feature: Food physics—Physics of the microwave oven. Physics Education, 39(1), 74–81. https://doi.org/10.1088/0031-9120/39/1/006

Xu, W., Islam, M. N., Cao, X., Tian, J., & Zhu, G. (2021). Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices. LWT, 20, 110413. https://doi.org/10.1016/j.lwt.2020.110413

Downloads

Published

2025-08-25

How to Cite

Wahid Nur Huda, Arif Rahman Saleh, & Sigit Mujiarto. (2025). Simulasi CFD Pengeringan Maggot dengan Microwave Oven Berbasis Software Comsol Multiphysics. Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 3(5), 12–21. https://doi.org/10.61132/jupiter.v3i5.1049

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.