Analisa Perbandingan Konduktor ACSR Hawk dan ACCC Amsterdam pada Rekonduktoring SUTET 500 kV di Suralaya-Cilegon
DOI:
https://doi.org/10.61132/jupiter.v3i5.1093Keywords:
ACCC Amsterdam Conductor, ACSR Hawk Conductor, Reconductoring, SUTET 500 kV, Transmission LineAbstract
Transmission line reconductoring is one of the strategic solutions to increase the capacity and efficiency of the power system without the need to build new infrastructure. This study aims to analyze and compare the performance of two types of conductors, namely ACSR Hawk and ACCC Amsterdam, used in the Suralaya-Cilegon 500 kV SUTET transmission line. The comparison is carried out by considering technical aspects including power losses, ampacity, horizontal and vertical sag values, and overall energy efficiency. The research methodology involved a literature study, collection of conductor technical data, calculation of resistance, current, and power losses, and simulation of sag values against temperature variations. In addition, economic analysis and field implementation aspects were also considered to assess the feasibility of using each conductor. The results show that Amsterdam's ACCC conductor has superior technical performance compared to Hawk's ACSR. ACCC is capable of delivering currents up to ±1300 A, compared to ACSR Hawk which is only ±800 A. The power loss value using ACCC is recorded at ±1.34 MW, lower than ACSR Hawk at ±1.79 MW. In addition, ACCC exhibits smaller sag values due to its lighter weight and higher tensile stress, making it more stable against temperature fluctuations. In terms of energy efficiency, the use of ACCC can save energy up to ±3942 MWh per year. By considering the technical advantages and long-term energy efficiency, this study recommends the use of Amsterdam ACCC as a reconductoring solution for high-voltage transmission lines, especially in systems that have high loads and require maximum reliability and efficiency.
References
Agustian, D., Aribowo, D., & Row, W. (2024). Pemeliharaan jaringan distribusi saluran udara tegangan menengah (SUTM) 20 kV dengan metode right of way (ROW) di PT PLN (Persero) ULP Serang. Jurnal Teknik Elektro dan Teknologi Informasi, 12(3). https://doi.org/10.23960/jitet.v12i3S1.5413
Balaraja, S. K. V., Nugroho, B., Romadhon, E. S., & Isfahani, M. N. (2022). Analisis risiko konstruksi pada pekerjaan pembangunan SUTET 500 kV Balaraja–Kembangan. Jurnal Teknik Sipil-Arsitektur, 21(1), 44–53. https://doi.org/10.54564/jtsa.v21i1.129
Fairley, P. (2024). A faster, cheaper way to double power line capacity. IEEE Spectrum. https://spectrum.ieee.org/grid-enhancing-technologies
Furqaranda, R., Purba, D. Y., & Suwarno, S. (2020). Pengaruh temperatur lingkungan terhadap andongan dan kekuatan tarik konduktor jenis ACCC Lisbon di KNO Sumut. Jurnal Mesin Elektro Sipil (MESIL), 1(2), 81–89. https://doi.org/10.53695/jm.v1i2.100
Handayani, O., Darmana, T., & Widyastuti, C. (2019). Analisis perbandingan efisiensi penyaluran listrik antara penghantar ACSR dan ACCC pada sistem transmisi 150 kV. Energi & Kelistrikan, 11(1), 37–45. https://doi.org/10.33322/energi.v11i1.480
Iqbal, M., & Armono, H. D. (2023). Pemakaian temporary tower untuk optimalisasi penyelesaian rekonduktoring dan penggantian tower saluran udara tegangan tinggi (SUTT) 150 kV. Rekayasa, 16(2), 257–264. https://doi.org/10.21107/rekayasa.v16i2.21105
Joedo, L. A. (2020). Peningkatan batas aman induksi elektromagnetik saluran udara tegangan ekstra tinggi (SUTET) 500 kV bagi kesehatan manusia berdasarkan Peraturan Menteri ESDM No. 18 Tahun 2015 juncto No. 2 Tahun 2019. KILAT, 9(1), 49–56. https://doi.org/10.33322/kilat.v9i1.780
Luqman, H. M., Baharom, M. N. R., Jamail, N. A. M., Othman, N. A., Abd. Rahman, R., Yousof, M. F. M., & Ullah, I. (2020). Conductor sag comparison for 132 kV overhead transmission line improvement in Malaysia. Bulletin of Electrical Engineering and Informatics, 9(1), 39–47. https://doi.org/10.11591/eei.v9i1.1863
Octary, W., Eteruddin, H., & Tanjung, A. (2020). Susut tegangan pada penghantar ACCC di saluran transmisi 150 kV di PT. PLN (Persero) Unit Pelayanan Transmisi Pekanbaru. SainETIn, 5(1), 1–7. https://doi.org/10.31849/sainetin.v5i1.6275
Pratama, L. Y., Gianto, R., & Arsyad, M. I. (2022). Analisa perbandingan konduktor ACSR dan ACCC saluran transmisi tegangan tinggi 150 kV pada sistem khatulistiwa. Jurnal Teknik Elektro Universitas Tanjungpura, 10(18), 1–9. https://jurnal.untan.ac.id/index.php/jteuntan/article/view/55592
Pratama, R. B., Wibowo, P., & Anisah, S. (2025). Analisis pengaruh penggantian konduktor pada saluran udara tegangan menengah 20 kV terhadap drop tegangan di PT PLN (Persero) UP3 Bangkinang. Jurnal Pembangunan Infrastruktur, 5(2), 803–812. https://doi.org/10.54082/jupin.1361
Roza, I., Ananda, Y., Siregar, L. A., & Nasution, A. A. (2021). Analisa energi terselamatkan SUTT 150 kV tanpa pemadaman di PT PLN (Persero) Unit Pelayanan Transmisi (UPT) Medan. Jurnal Teknik Elektro, 3(2), 77–84.
Rozi, N. F. (2024). Studi analisa daya untuk kelayakan pekerjaan uprating gardu induk 150 kV Embalut Kalimantan Timur. Jurnal Energi dan Listrik, 2(5), 308–318.
Sajayasa, I., Widharma, I. S., Narottama, A., Sunaya, I. N., & Suputra, I. A. (2022). Analisis pengaruh penggantian konduktor AAAC ke MVTIC pada penyulang Kerambitan berbasis software ETAP. Jurnal Ilmiah Vastuwidya, 5(1), 99–104. https://doi.org/10.47532/jiv.v5i1.415
Slamet, P., Widagdo, R. S., & Hariadi, B. (2025). Study of ACSR conductor characteristics on power losses and voltage drop in 500 kV transmission lines: A case study at Krian–Ungaran. Wahana, 77(1), 65–80. https://doi.org/10.36456/wahana.v77i1.10315
Transmission line sag calculation with ampacities of different conductors. (n.d.). Springer Professional.
Trialviano Bagus, R., & Irawan, D. (2023). Analisis perbaikan jatuh tegangan pada sistem transmisi 150 kV Gardu Induk Cerme menggunakan aplikasi DigSilent. Jurnal Ampere, 8(1), 10–21. https://doi.org/10.31851/ampere.v8i1.11635
Wahana, P., & Oetomo, P. (2023). Analisis penggantian lightning arrester bay trafo 3 Gardu Induk 150 kV Gandul. Sinusoida, 25(2), 35–40. https://doi.org/10.37277/s.v25i2.1926
Wang, Y., Zhang, P., Liu, J., Liu, J., Wu, G., & Sun, C. (2024). Research progress of overhead conductors with carbon-fiber composite core. The International Journal of Advanced Manufacturing Technology, 121, 561–578. https://doi.org/10.1007/s00170-023-12890-0
Why advanced conductors don’t use steel cores. (2024). CTC Global White Paper. CTC Global.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



