Pemodelan K-Means untuk Klasifikasi Siswa Berprestasi di Sekolah Menengah Kejuruan (SMK) Migas Cepu

Authors

  • Muksan Junaidi Sekolah Tinggi Teknologi Ronggolawe Cepu

DOI:

https://doi.org/10.61132/jupiter.v2i6.759

Keywords:

Excel Application, K-Means, Leger Value Reports, Outstanding students, Rapid Miner

Abstract

The determination of outstanding students is based on different criteria, depending on the type of achievement that is to be measured. At SMK Migas Cepu, this assessment is typically based on the highest academic score from the class promotion exam. However, this method is considered less accurate and problematic in terms of grouping students. To address this issue, a clustering method using the K-Means algorithm can be applied. The purpose of this research is to build a K-Means model to determine outstanding students. The data used in this study comes from the report card ledger of class XI Machine A and B for the year 2022, which includes 71 students at SMK Migas Cepu. The RapidMiner tool was used to build the K-Means model and cluster the data based on student characteristics. The first test conducted using Excel resulted in two clusters: 35 outstanding students and 36 non-outstanding students. Meanwhile, the second test using the RapidMiner model produced two clusters with a distribution of 26 outstanding students and 45 non-outstanding students.

References

Artikel Jurnal

Dhuhita, W. M. P. (2015). Clustering menggunakan metode K-Means untuk menentukan status gizi balita. Jurnal Informatika Darmajaya, 15(2), 160–174.

Han, J. W., Kamber, M., & Pei, J. (2012). Findings seminal papers using data mining techniques. Open Journal of Social Sciences. https://doi.org/10.4236/JSS.2020.89023

Haryati, S., Sudarsono, A., & Suryana, E. (2015). Implementasi data mining untuk memprediksi masa studi mahasiswa menggunakan algoritma C4.5 (Studi kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama, 11.

Sumadikarta, I., & Abeiza, E. (2014). Penerapan algoritma K-Means pada data mining untuk memilih produk dan pelanggan potensial (Studi kasus: PT Mega Arvia Utama). Jurnal Satya Informatika, 1, 1–12.

Buku Kompilasi (Edited Book)

Ediyanto, Muhlasah Novitasari Mara, & Neva Satyahadewi. (2013). Pengklasifikasian karakteristik dengan metode K-Means cluster analysis. BIMASTER, 2(02).

Internet

SMK Migas Cepu. (n.d.). Retrieved August 24, 2022, from http://www.smkmigas.com/

Downloads

Published

2024-11-30

How to Cite

Muksan Junaidi. (2024). Pemodelan K-Means untuk Klasifikasi Siswa Berprestasi di Sekolah Menengah Kejuruan (SMK) Migas Cepu . Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 2(6), 190–202. https://doi.org/10.61132/jupiter.v2i6.759

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.