Perbandingan Xgboost dan Logistic Regression dalam Memprediksi Credit Card Customer Churn
DOI:
https://doi.org/10.61132/jupiter.v3i3.807Keywords:
Customer Churn, F1-Score, Logistic Regression, Precision, RecallAbstract
With the times, cash transactions that used to use cash are now turning to credit cards. However, the increasing use of credit cards presents challenges, especially in maintaining customer loyalty. Customer churn is the loss of customers within a certain period for various reasons. Logistic Regression is a machine learning algorithm that studies the relationship between a dependent variable and several independent variables and Extreme Gradient Boosting (XGBoost) is a Gradient tree-boosting algorithm that offers out-of-core learning and sparsity awareness.The purpose of this study is to compare the performance between Logistic Regression and Extreme Gradient Boosting (XGBoost) algorithms in predicting customer churn in credit card services using evaluation metrics such as accuracy, precision, recall, and F1-score. Based on the research results, it can be concluded that XGBoost has better performance in all evaluation metrics, both in terms of precision, recall, F1-score, and accuracy. Based on the research, XGBoost shows superior performance compared to Logistic Regression in all evaluation metrics.
References
Akki.or.id. (2024). Jumlah kartu kredit. https://akki.or.id/statistik/
Ardelia, N., & Margaretha Leon, F. (2021). Faktor–faktor yang mempengaruhi konsumen dalam menggunakan dan berhutang dengan kartu kredit di Jabodetabek. Jurnal Akuntansi, Keuangan, dan Manajemen, 2(2), 83–101. https://doi.org/10.35912/jakman.v2i2.136
Bintoro, P., Zulkifli, Z., Anggista Putri, N., Pringsewu, A., Kesehatan, F., & Aisyah Pringsewu, U. (n.d.). Analisis perbandingan klasifikasi virus cacar monyet dengan pendekatan algoritma machine learning. SNESTIK Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika. https://doi.org/10.31284/p.snestik.2024.5849
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785
Cherif, I. L., & Kortebi, A. (2019). On using eXtreme Gradient Boosting (XGBoost) machine learning algorithm for home network traffic classification. IFIP Wireless Days, 2019(April), 1–6. https://doi.org/10.1109/WD.2019.8734193
Farid Naufal, M., Fernando Susanto, A., Nathaneil Kansil, C., Huda, S., & Kunci, K. (n.d.). Analisis perbandingan algoritma machine learning untuk prediksi potensi hilangnya nasabah bank. Bank Application of Machine Learning, 22(1).
Faruq Mujaddid, M., & Al-Faraby, S. (n.d.). Analisis churn prediction menggunakan metode logistic regression dan SMOTE (Synthetic Minority Over-sampling Technique) pada perusahaan telekomunikasi.
Fauzan, M. A., & Murfi, H. (2018). The accuracy of XGBoost for insurance claim prediction. International Journal of Advance Soft Computing Applications, 10(2). https://www.claimsjournal.com/news/national/2013/11/21/240353.htm
Goyal, S. (2020). Credit card customers. Kaggle. https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers
Kaya, E., Dong, X., Suhara, Y., Balcisoy, S., Bozkaya, B., & Pentland, A. S. (2018). Behavioral attributes and financial churn prediction. EPJ Data Science, 7(1). https://doi.org/10.1140/epjds/s13688-018-0165-5
Kristiawan, K., & Widjaja, A. (2021). Perbandingan algoritma machine learning dalam menilai sebuah lokasi toko ritel. Jurnal Teknik Informatika dan Sistem Informasi, 7(1). https://doi.org/10.28932/jutisi.v7i1.3182
Last, F., Douzas, G., & Bacao, F. (2017). Oversampling for imbalanced learning based on K-means and SMOTE. Information Sciences, 1–19. https://doi.org/10.1016/j.ins.2018.06.056
Mauludin Nur Aziz, A., Mauliddin, A., Armanda Sintalana, V., Daryl Hafiz, R., Akbar Rismayadi, A., Studi Sistem Informasi, P., & Adhirajasa Reswara Sanjaya, U. (2023). Prediksi customer churn menggunakan logistic regression dan decision tree. Jurnal Ilmiah Teknologi Informasi dan Komputer, 4(1).
Mohammad Aulia Riftiarraafi, & Ernawati, D. (2024). Penerapan algoritma C4.5 untuk klasifikasi customer churn pada perusahaan perbankan. Sammajiva: Jurnal Penelitian Bisnis dan Manajemen, 2(1), 178–190. https://doi.org/10.47861/sammajiva.v2i1.808
Muslim Karo Karo, I. (2020). Implementasi metode XGBoost dan feature importance untuk klasifikasi pada kebakaran hutan dan lahan. Journal of Software Engineering, Information and Communication Technology, 1(1).
Persada Pulungan, M., Purnomo, A., Kurniasih, A., & Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ, S. (n.d.). Penerapan SMOTE untuk mengatasi imbalance class dalam klasifikasi kepribadian MBTI menggunakan Naive Bayes classifier. https://doi.org/10.25126/jtiik.2024117989
Siringoringo, R., Perangin-angin, R., & Purba, M. J. (2021). Segmentasi dan peramalan pasar retail menggunakan XGBoost dan principal component analysis. Methomika: Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, 5(1), 42–47. https://doi.org/10.46880/jmika.Vol5No1.pp42-47
Sunjaya, M. I. (2018). Tingkat churn tabungan pada industri perbankan. Ekspektra: Jurnal Bisnis dan Manajemen, 2, 157–169. https://doi.org/10.25139/ekt.v2i2.1101
Yulianti, E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan metode Extreme Gradient Boosting (XGBoost) pada klasifikasi nasabah kartu kredit. JOMTA: Journal of Mathematics: Theory and Applications, 4(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



