Klasifikasi Algoritma Support Vector Machine (SVM) Untuk Memprediksi Persebaya Suarabaya Juara BRI Liga 1

Authors

  • Wahyu Kurniawan Universitas Pembangunan Nasional Veteran Jawa Timur
  • Dwi Sukma Donoriyanto Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.61132/manufaktur.v2i2.359

Keywords:

Clustering, Support Vector Machine, Orange

Abstract

This research uses the Support Vector Machine (SVM) algorithm to predict Persebaya Surabaya's ranking in BRI Liga 1. The data used includes goals scored, goals given away, total end-of-season points, and status as champions. The results of the analysis using Orange software show that Persebaya Surabaya does not necessarily become a champion if it has a point value of 42 and an SVM value of 41. To become a champion, Persebaya Surabaya must score 69 points or more in a season and achieve an average of more than 54 goals per season. The suggestion of this research is to have more data so that the results of data processing using Orange software are more optimal and accuracy is more precise.

References

Bahri, S., & Lubis, A. (2020). Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League. Jurnal Sintaksis, 2(1), 63-70.

Hovi, H. S. W., Hadiana, A. I., & Umbara, F. R. (2022). Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM). Informatics and Digital Expert (INDEX), 4(1), 40-45.

Nasrullah, A. H. (2021). Implementasi algoritma Decision Tree untuk klasifikasi produk laris. Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 7(2), 45-51.

Published

2024-06-06

How to Cite

Wahyu Kurniawan, & Dwi Sukma Donoriyanto. (2024). Klasifikasi Algoritma Support Vector Machine (SVM) Untuk Memprediksi Persebaya Suarabaya Juara BRI Liga 1. Manufaktur: Publikasi Sub Rumpun Ilmu Keteknikan Industri, 2(2), 127–133. https://doi.org/10.61132/manufaktur.v2i2.359

Similar Articles

You may also start an advanced similarity search for this article.