Rancang Bangun Pembangkit Listrik Tenaga Bayu dengan Sistem Monitoring Pengisian Battery Berbasis Internet of Things (IoT)

Authors

  • Ahmad Alif Farhan Politeknik Pelayaran Surabaya
  • Diana Alia Politeknik Pelayaran Surabaya
  • Hadi Setiawan Politeknik Pelayaran Surabaya

DOI:

https://doi.org/10.61132/jupiter.v3i3.866

Keywords:

Battery Charger, IoT, Monitoring, Wind Power Plant

Abstract

Extreme climate change in Indonesia, caused by air pollution from the use of fossil energy, has encouraged the development of renewable energy technology, including Wind Power Plants (PLTB). This technology is increasingly important for providing clean energy, especially in the maritime industry. The aim of this applied scientific work is to provide a battery charging solution when the emergency battery charger charging system on commercial ships experiences problems. To make it easier to monitor the power produced by wind power plants and also battery capacity via a smartphone application in real time. The method used in this applied scientific research research is experimental. The results of calculating the average power during testing at night show an average power of 10.22 Watt/min and an average current of 0.78 A. So it can be concluded that battery charging takes 11.53 hours. Meanwhile, the results of calculating the average power during testing during the day show an average power of 13.41 Watt/min and an average current of 1.02 A. So it can be concluded that charging the battery lasts for 8.82 hours. From the two data obtained, it can be concluded that charging is optimal during the day because the efficient charging time is 8.82 hours.

References

Adam, M., Harahap, P., & Nasution, M. R. (2023). Analisa pengaruh perubahan kecepatan angin pada pembangkit listrik tenaga angin (PLTA) terhadap daya yang dihasilkan generator DC. RELE (Rekayasa Elektronika dan Energi).

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data structures and algorithms. Addison-Wesley.

Fajri, S., & Yuhendri, M. (2023). Monitoring pembangkit listrik tenaga angin menggunakan Human Machine Interface. JTEIN (Jurnal Teknik Elektro Indonesia), 4(1), 434–444. https://doi.org/10.24036/jtein.v4i1.421

Faris, M., Abiyyu, A., Kurniawan, D., Nurmala, E., & Muda, I. (2024). Kegagalan sistem kerja start-stop emergency generator di kapal AHTS Logindo Sturdy. Jurnal Teknik Perkapalan, 1(2), 10–22.

Hamzah, A., Chaniago, B., Suwitno, S., Rosma, I. H., Gussyafri, H., & Kurniawan, I. (2018). Web-based wind energy conversion system monitoring. In Proceedings of the 2nd International Conference on Electrical Engineering and Informatics (ICon EEI 2018) (pp. 179–182). IEEE. https://doi.org/10.1109/ICon-EEI.2018.8784337

Kalyanraj, D., Prakash, S. L., & Sabareswar, S. (2017). Wind turbine monitoring and control systems using Internet of Things. In International Conference on 21st Century Energy Needs – Materials, Systems and Applications (ICTFCEN 2016). IEEE. https://doi.org/10.1109/ICTFCEN.2016.8052714

Kovalčík, M., Fecilak, P., & Jakab, F. (2013). Control and monitoring system of small water and wind power plant. In Proceedings of the 11th IEEE International Conference on Emerging eLearning Technologies and Applications (ICETA 2013) (pp. 235–238). IEEE. https://doi.org/10.1109/iceta.2013.6674435

Malihah, L. (2022). Tantangan dalam upaya mengatasi dampak perubahan iklim dan mendukung pembangunan ekonomi berkelanjutan: Sebuah tinjauan. Jurnal Kebijakan Pembangunan, 17(2), 219–232. https://doi.org/10.47441/jkp.v17i2.272

Prayitno, W. A., Muttaqin, A., & Syauqy, D. (2017). Sistem monitoring suhu, kelembapan, dan pengendali penyiraman tanaman hidroponik menggunakan Blynk Android. Jurnal Pengembangan Teknologi Informasi dan Komputer, 1(4), 292–297. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/87/46

Rafiee, M., Khajehzadeh, M., & Faramarzi, M. (2020). Smart wind farm monitoring system using wireless sensor networks. International Journal of Renewable Energy Research (IJRER), 10(1), 345–352.

Romadhon, R. S. F. D. (2023). Analisis pengaturan energi terbarukan dalam kendaraan berbasis elektrik untuk mendukung perlindungan lingkungan (Analisis komparatif antara Indonesia, Brazil, dan Pakistan). Jurnal Pacta Sunt Servanda, 4, 1–14.

Wicaksono, D. H., Djuniadi, D., & Apriaskar, E. (2023). Monitoring sistem pembangkit listrik tenaga angin berbasis Internet of Things. Jurnal Teknologi Elektro, 14(2), 118. https://doi.org/10.22441/jte.2023.v14i2.010

Winambo, E. (2022). Kinerja charger controller dan akumulator di Kampus III Universitas PGRI Semarang. Jurnal Elektro dan Teknologi Informasi, 1(1), 25–30.

Zainal, M., Tri Putra, K., & Amri, U. (2023). Perancangan prototipe pembangkit listrik tenaga angin dengan vertical axis wind turbine. Jurnal Mosfet, 3(2), 17–22. https://doi.org/10.31850/jmosfet.v3i2.2673

Zhao, Y., Zhang, H., Wang, J., & Li, Y. (2021). A low-cost IoT solution for remote wind turbine monitoring. Renewable Energy, 164, 1234–1243. https://doi.org/10.1016/j.renene.2020.10.052

Downloads

Published

2025-05-30

How to Cite

Ahmad Alif Farhan, Diana Alia, & Hadi Setiawan. (2025). Rancang Bangun Pembangkit Listrik Tenaga Bayu dengan Sistem Monitoring Pengisian Battery Berbasis Internet of Things (IoT). Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro Dan Informatika, 3(3), 124–142. https://doi.org/10.61132/jupiter.v3i3.866

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.