Analisis Klasifikasi Risiko Dropout Mahasiswa Menggunakan Algoritma Decision Tree dan Random Forest
DOI:
https://doi.org/10.61132/jupiter.v3i4.980Keywords:
Classification, Decision Tree, Machine Learning, Random Forest, Student DropoutAbstract
This study aims to develop an accurate predictive model for identifying students at risk of academic dropout using Decision Tree and Random Forest algorithms. The research utilizes a publicly available dataset sourced from Kaggle, which includes academic and demographic features such as GPA, attendance, credit load, financial aid status, and exam scores. The methodology involves several stages: data collection, preprocessing (handling missing values, encoding categorical variables, and feature scaling), model training, and evaluation using performance metrics such as Accuracy, Precision, Recall, F1-Score, and Confusion Matrix. Results show that the Random Forest algorithm outperforms Decision Tree in terms of accuracy and robustness, with notable feature importance on math, reading, and writing scores. The findings highlight the potential of machine learning in early detection of dropout risks and provide actionable insights for academic institutions to design timely interventions. This research contributes to the growing field of educational data mining and supports data-driven decision-making processes in higher education management.
References
Ahmad, F., Ismail, N., & Khan, S. (2020). Student academic performance prediction using machine learning algorithms. IEEE Access, 8, 67–79. https://doi.org/10.1109/ACCESS.2020.2968515
Aljohani, A. (2016). A comprehensive review of factors influencing student dropout in higher education. Education and Information Technologies, 21, 983–1010. https://doi.org/10.1007/s10639-015-9363-y
Alturki, H., & Alturki, M. (2019). Using decision tree algorithm for classifying students' academic risk. Procedia Computer Science, 163, 16–24. https://doi.org/10.1016/j.procs.2019.12.076
Amani, N. N., Martanto, M., & Hayati, U. (2024). Penggunaan algoritma decision tree untuk prediksi prestasi siswa di Sekolah Dasar Negeri 3 Bayalangu Kidul. JATI: Jurnal Mahasiswa Teknik Informatika, 8(1), 473–479. https://doi.org/10.36040/jati.v8i1.8355
Cortez, P., & Silva, A. M. G. (2015). Using data mining to predict secondary school student performance. Journal of Educational Data Mining, 7(1), 1–17.
Dagdagui, R. T. (2022). Predicting students’ academic performance using regression analysis. American Journal of Educational Research, 10(11), 640–646. https://doi.org/10.12691/education-10-11-2
Esananda, S. C., Nugroho, B., & Anggraeny, F. (2021). Penerapan algoritma decision tree dalam menentukan prestasi akademik siswa. Jurnal Informatika dan Sistem Informasi, 2(2), 413–424. https://doi.org/10.33005/jifosi.v2i2.311
Fadilla, Z., Ardiawan, M. K. N., Abdullah, M. E. S. K., Aiman, M. J. U., & Hasda, S. (2021). Metodologi penelitian kuantitatif. http://penerbitzaini.com
Khosravi, T. M., Kitto, K., & Pardo, A. (2020). Predicting students' academic risk using machine learning. Computers & Education, 158, 104117. https://doi.org/10.1016/j.compedu.2020.104117
Lakkaraju, H., Leskovec, J., & Kleinberg, J. (2015). Modeling student dropout using semi-supervised learning. In Proceedings of the 21st ACM SIGKDD (pp. 10–18). https://doi.org/10.1145/2783258.2783387
Mostipak, J. (2020). Dropout prediction data [Dataset]. Kaggle. https://www.kaggle.com/datasets/jessemostipak/dropout-prediction-data
Nurhidayat, A., Asmunin, A., & Suyatno, D. F. (2021). Prediksi kinerja akademik mahasiswa menggunakan machine learning dengan sequential minimal optimization. Journal of Information Engineering and Educational Technology, 5(2), 84–91. https://doi.org/10.26740/jieet.v5n2.p84-91
Patil, S., & Kulkarni, U. (2022). A comparative study of machine learning models for student dropout prediction. Education and Information Technologies, 27(3), 113–130. https://doi.org/10.1007/s10639-021-10563-3
Putra, D., & Lestari, N. (2020). Klasifikasi mahasiswa berisiko dropout menggunakan decision tree C4.5. Jurnal Sistem dan Teknologi Informasi.
Rahman, M. F., & Yulianti, I. (2021). Prediksi dropout mahasiswa menggunakan algoritma machine learning. Jurnal Ilmiah Informatika, 9(1).
Rajagukguk, S. A. (2021). Tinjauan pustaka sistematis: Prediksi prestasi belajar peserta didik dengan algoritma pembelajaran mesin. Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, 1(1). https://doi.org/10.20885/snati.v1i1.4
Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, 40(6), 601–618.
Sumarmo, W. (2021). Penerapan data mining dalam memprediksi risiko putus studi mahasiswa. In Seminar Nasional Teknologi Informasi dan Komunikasi (TIK). UNIKOM.
Suyanto, A., & Sari, R. (2021). Prediksi dropout mahasiswa menggunakan algoritma random forest dan logistic regression. Jurnal Teknologi Informasi dan Ilmu Komputer. Universitas Brawijaya.
Zen, L. A., Wardani, R. M., & Firmansyah, R. (2020). Penerapan algoritma random forest untuk prediksi kelulusan mahasiswa. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (JPTIIK), 4(7).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



