Pengaruh Variasi Suhu Pendinginan untuk Pemisah Flash Hidrokarbon Ringan Menggunakan Simulasi Aspen Hysys
DOI:
https://doi.org/10.61132/venus.v3i6.1207Keywords:
Aspen HYSYS, Energy Efficiency, Flash Separator, Mild Hydrocarbons, Temperature VariationAbstract
The oil and gas industry plays a crucial role in meeting global energy needs, with crude oil from production wells being the primary product of upstream operations. Prior to further processing, crude oil requires pretreatment at the production site, one of the key stages being phase separation using a flash separator. This study examines the effect of variations in cooling temperature on the performance of liquid phase separation and energy requirements in the flash separation process of light hydrocarbons. The analysis was conducted through process simulation using Aspen HYSYS version 14.2 with the Peng Robinson property package. The feed stream had a mass rate of 10,000 kg per hour, a temperature of 50°F, and atmospheric pressure, with compositions of ethane, propane, isobutane, and normal butane. The process configuration included compression, cooling, and phase separation in a flash separator at a constant pressure of 50 psia. Variations in cooling temperature were applied at 20, 10, and 0°C. The simulation results indicated a thermodynamic critical point at 10°C. At 20°C, no liquid phase was formed, while at 10°C, significant liquid yield was obtained with moderate energy consumption. Lowering the temperature to 0°C dramatically increases liquid recovery, but the cooling energy requirement also increases sharply. Sensitivity analysis confirms a strong inverse relationship between temperature and condensation yield, as well as a surge in energy consumption at low temperatures. The optimal operating condition is set at 10°C, providing a balance between separation efficiency and energy efficiency in accordance with sustainable manufacturing principles.
References
Alshbuki, E. H. M. (2024). Proses simulasi untuk pemisah flash hidrokarbon ringan dari gas alam oleh program Aspen HYSYS.
Aspen-HYSYS, P. U. (2019). Dynamic simulation of a crude oil distillation plant using Aspen-HYSYS®. International Journal of Simulation Systems, Science & Technology, 18(2), 229–241. https://doi.org/10.2507/IJSIMM18(2)465
Banijamali, S. M., Ilinca, A., Afrouzi, A. A., & Rousse, D. R. (2025). Optimizing hydrogen liquefaction efficiency through waste heat recovery: A comparative study of three process configurations. Processes, 13(5), 1–39. https://doi.org/10.3390/pr13051349
Cui, P., & Lu, X. (2025). A dynamic energy-saving control method for multistage manufacturing systems with product quality scrap. Sustainability, 17(13), 1–19. https://doi.org/10.3390/su17136164
Edwin, M., Abdulsalam, S., & Muhammad, I. M. (2017). Process simulation and optimization of crude oil stabilization scheme using Aspen-HYSYS software. International Journal of Recent Trends in Engineering and Research, 3(5), 324–334. https://doi.org/10.23883/ijrter.2017.3230.miiuw
Ivander, A., Darawia, W., & Persada, A. (2025). Analisis komposisi dari sampel natural gas menggunakan alat kromatografi gas. Distilat: Jurnal Teknologi Minyak dan Gas, 11(3), 555–562. https://doi.org/10.33795/distilat.v11i3.6731
Jia, Y., Huang, Y., Zhou, J., & Sun, J. (2025). Construction of evaluation indicator system and analysis for low-carbon economy development in Chengdu City of China. Systems, 13(7), 1–42. https://doi.org/10.3390/systems13070573
Meng, H., Lv, J., Yu, H., Sun, S., Ma, L., Ji, Z., & Chang, C. (2025). Energy consumption and optimization analysis of gas production system of condensate gas reservoir-type gas storage. Energies, 18(17), 1–18. https://doi.org/10.3390/en18174677
Olugbenga, A. G., Al-Mhanna, N. M., Yahya, M. D., Afolabi, E. A., & Ola, M. K. (2021). Validation of the molar flow rates of oil and gas in three-phase separators using Aspen HYSYS. Processes, 9(2), 1–18. https://doi.org/10.3390/pr9020327
Prabowo, R., & Suryanto, A. P. (2019). Implementasi lean dan green manufacturing guna meningkatkan sustainability pada PT Sekar Lima Pratama. Jurnal SENOPATI: Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering, 1(1), 52–63. https://doi.org/10.31284/j.senopati.2019.v1i1.535
Rahmayanti, L., Rahmah, D. M., & Rahmayanti, L. (2021). Minyak dan gas bumi di Indonesia. Jurnal Sains Edukatika Indonesia (JSEI), 3(2), 9–16.
Ramadhan, F. Y., Perbawani, S., Anggraini, A., & Chandra, A. (2025). Rancang alat separator pada pembuatan karbon dioksida cair dari gas buang pabrik semen. Jurnal Teknik Kimia, 7, 1–8.
Roy, P. S., & Rahman, M. A. (2011). Aspen-HYSYS simulation of natural gas processing plant. Journal of Chemical Engineering, 26(1), 62–65. https://doi.org/10.3329/jce.v26i1.10186
Wang, Z., Li, S., Jin, Z., Li, Z., Liu, Q., & Zhang, K. (2023). Oil and gas pathway to net-zero: Review and outlook. Energy Strategy Reviews, 45, 101048. https://doi.org/10.1016/j.esr.2022.101048
Zhu, D. (2023). New advances in oil, gas, and geothermal reservoirs. Energies, 16(1), 16–19. https://doi.org/10.3390/en16010477
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Venus: Jurnal Publikasi Rumpun Ilmu Teknik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



